You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Integrated Platform for Testing MEMS Mechanical Properties at the Wafer Scale by the IMaP Methodology

    Published: 0

      Format Pages Price  
    PDF (300K) 11 $25   ADD TO CART
    Complete Source PDF (7.7M) 334 $110   ADD TO CART


    A new instrument to accurately and verifiably measure mechanical properties across an entire MEMS wafer is under development. We have modified the optics on a conventional microelectronics probe station to enable three-dimensional imaging while maintaining the full working distance of a long working distance objective. This allows standard probes or probe cards to be used. We have proceeded to map out mechanical properties of polycrystalline silicon along a wafer column by the Interferometry for Material Property Measurement (IMaP) methodology. From interferograms of simple actuated cantilevers, out-of-plane deflection profiles at the nanometer scale are obtained. These are analyzed by integrated software routines that extract basic mechanical properties such as cantilever curvature and Young's modulus. Non-idealities such as support post compliance and beam take off angle are simultaneously quantified. Curvature and residual stress are found to depend on wafer position. Although deflections of cantilevers varied across the wafer, Young's modulus E ∼ 161 GPa is independent of wafer position as expected. This result is achieved because the non-idealities have been taken into account.


    MEMS metrology, long working distance interferometry, software integration, wafer scale, mechanical property characterization

    Author Information:

    de Boer, MP
    Sandia National Laboratories, Albuquerque, NM

    Smith, NF
    Sandia National Laboratories, Albuquerque, NM

    Masters, ND
    Sandia National Laboratories, Albuquerque, NM

    Sinclair, MB
    Sandia National Laboratories, Albuquerque, NM

    Pryputniewicz, EJ
    Worcestor Polytechnic Institute, Worcester, MA

    Committee/Subcommittee: E08.01

    DOI: 10.1520/STP10983S