You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Micromechanical Modeling of Hydrogen Transport—A Review

    Published: 01 January 2000

      Format Pages Price  
    PDF (596K) 34 $25   ADD TO CART
    Complete Source PDF (9.9M) 486 $215   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Reviewing the mechanical aspects of stress corrosion cracking and hydrogen embrittlement almost 25 years ago, Rice [1, 2] indicated that an accurate analysis of hydrogen transport as affected by local stresses and strains is of primary importance toward understanding the conditions under which the mechanisms causing hydrogen embrittlement operate [3]. In 1980, Hirth in a review article [4] made it clear that trapping of hydrogen is a very important part of hydrogen embrittlement, and its significance lies behind the embrittling mechanisms. The purpose of this study is to review the models of hydrogen transport in non-hydride forming systems, and draw conclusions as regards to the hydrogen degradation effect. It should be pointed out that this review does not aim at identifying and quoting the entire literature on the subject, which is voluminous. In fact, there is a number of recent articles devoted on various specific issues of hydrogen transport, and related issues of trapping [5–12]. Rather, the effort will be directed toward providing the status of our current understanding of hydrogen transport, and in particular how solid mechanics methodology can help in this direction.


    hydrogen, diffusion, transport, embrittlement, plasticity, fracture

    Author Information:

    Sofronis, P
    Associate Professor, University of Illinois at Urbana-Champaign, Urbana, IL

    Taha, A
    Graduate Research Assistant, University of Illinois at Urbana-Champaign, Urbana, IL

    Committee/Subcommittee: G01.06

    DOI: 10.1520/STP10215S