Dedication

This Monograph is dedicated to the 20th anniversary of the State Key Laboratory of Tribology.

Jianbin Luo
Yuanzhong Hu
Shizhu Wen
Acknowledgment

This book was brought to fruition by the efforts of many individuals. We would like to thank all of them, beginning with the editor and the publication staff of ASTM International, especially Dr. George Totten who has encouraged us to publish our research achievements in this monograph, and Kathy Dernoga and Monica Siperko who have given us guidance and assistance from the outset of the venture. In addition, we wish to convey appreciation to the authors who have devoted considerable time, energy, and resources to support this endeavor. We are also grateful to the reviewers of the various chapters who, through their suggestions, permitted good manuscripts to be made better.

Finally, we are grateful for the support from government and industry through various research programs, including National Basic Research Program of China, National Natural Science Foundation of China, and international joint researches. Their support of our research activities has led to this publication.

Jianbin Luo
Yuanzhong Hu
Shizhu Wen
Foreword

THIS PUBLICATION, *Physics and Chemistry of Micro-Nanotribology*, was sponsored by Committee D02 on Petroleum Products and Lubricants. This is Monograph 7 in ASTM International’s manual series.
Contents

Preface ... xi

Chapter 1: Introduction, *Shizhu Wen, Jianbin Luo, and Yuanzhong Hu* ... 1
 The Measurement and Investigation of Thin Film Lubrication (TFL) .. 2
 Surface Coatings .. 2
 Applications of Micro/Nanotribology .. 3
 Summary .. 4

Chapter 2: Measuring Techniques, *Dan Guo, Jiangbin Luo, and Yuanzhong Hu* ... 7
 Introduction .. 7
 Optical Measuring Techniques .. 8
 Surface Force Apparatus .. 14
 Scanning Probe Microscope ... 18
 Nanoindentation and Nanoscratching 22
 Other Measuring Techniques 26

Chapter 3: Thin Film Lubrication—Experimental Study, *Jianbin Luo and Shizhu Wen* 37
 Introduction .. 37
 Properties of Thin Film Lubrication 39
 The Failure of Lubricant Film 53
 Thin Film Lubrication of Ionic Liquids 54
 Gas Bubble in Liquid Film under External Electric Field .. 55
 Summary .. 60

Chapter 4: Thin Film Lubrication—Theoretical Modeling, *Chaohui Zhang* .. 63
 Introduction .. 63
 Spatial Average and Ensemble Average 64
 Velocity Field of Lubricants with Ordered Molecules 65
 Simulations via Micropolar Theory 67
 Rheology and Viscosity Modification 72
 Other Approaches Related to TFL Theories 74
 Conclusions .. 77

Chapter 5: Molecule Films and Boundary Lubrication, *Yuanzhong Hu* .. 79
 Introduction .. 79
 Mechanisms of Boundary Lubrication 80
 Properties of Boundary Films as Confined Liquid 82
 Ordered Molecular Films ... 88
 Discussions on Boundary Friction 93
 Summary .. 94

Chapter 6: Gas Lubrication in Nano-Gap, *Meng Yonggang* ... 96
 History of Gas Lubrication .. 96
 Theory of Thin Film Gas Lubrication 97
 Application of Gas Lubrication Theory 103
 Summary .. 114

Chapter 7: Mixed Lubrication at Micro-scale, *Wen-zhong Wang, Yuanzhong Hu, and Jianbin Luo* 116
 Introduction .. 116
 Statistic Approach of Mixed Lubrication 116
 A DML Model Proposed by the Present Authors 118
 Validation of the DML Model 125
 Performance of Mixed Lubrication—Numerical and Experimental Studies .. 130
 Summary .. 144
Chapter 8: Thin Solid Coatings, Chenhui Zhang and Tianmin Shao ... 147
 Introduction ... 147
 Diamond-like Carbon (DLC) Coatings .. 147
 CNx Films .. 151
 Multilayer Films .. 153
 Superhard Nanocomposite Coatings ... 157

Chapter 9: Friction and Adhesion, Yuanzhong Hu ... 167
 Introduction .. 167
 Physics and Dynamics of Adhesion .. 167
 Models of Wearless Friction and Energy Dissipation .. 171
 Correlations Between Adhesion and Friction ... 178
 The Nature of Static Friction ... 181
 Summary ... 184

Chapter 10: Microscale Friction and Wear/Scratch, Xinchun Lu and Jianbin Luo 187
 Introduction .. 187
 Differences Between Macro and Micro/Nano Friction and Wear 188
 Calibration of the Friction Force Obtained by FFM ... 189
 Microscale Friction and Wear of Thin Solid Films ... 191
 Microscale Friction and Wear of Modified Molecular Films .. 194
 Microscale Friction and Scratch of Multilayers ... 200
 Summary ... 208

Chapter 11: Tribology in Magnetic Recording System, Jianbin Luo, Weiming Lee, and Yuanzhong Hu 210
 Introduction .. 210
 Surface Modification Films on Magnetic Head .. 211
 Lubricants on Hard Disk Surface .. 226
 Challenges from Developments of Magnetic Recording System 231

Chapter 12: Tribology in Ultra-Smooth Surface Polishing, Jianbin Luo, Xinchun Lu, Guoshun Pan, and Jin Xu 237
 Introduction .. 237
 Nanoparticles Impact .. 237
 Chemical Mechanical Polishing (CMP) ... 245
 The Polishing of Magnetic Head Surface ... 262

Subject Index ... 270
Preface

The roots of micro/nanotribology can be found deep in conventional concepts of tribology. The recognition in the last century of elasto-hydrodynamic lubrication (EHL) as the principal mode of fluid-film lubrication in many machine components enabled reliable design procedures to be developed for both highly stressed and low elastic modulus machine elements. Towards the end of the last century submicron film thicknesses were recognized in many EHL applications. It is now being asked how EHL concepts can contribute to understanding the behavior of even thinner lubricating films. The answer is to be found in the subject widely known as micro/nanotribology.

As early as 1929 Tomlinson considered the origin of friction and the mechanism of energy dissipation in terms of an independent oscillator model. This important approach provided the foundation for many present studies of atomic scale friction. The rapid development of micro/nanotribology in recent decades is certainly a significant and fascinating aspect of modern tribology. New scientific instruments, impressive modeling, and computer simulations have contributed to the current fascination with nanotechnology.

A remarkable indication of these developments is evident in the boom of publications. Nevertheless, the knowledge and understanding of micro/nanotribology remains incomplete, although several books related to the subject have now been published. The interdisciplinary nature of tribology persists in studies of microscopic scale tribology. Individual investigators contribute to specific aspects of the field as they help to develop a general picture of the new field of micro/nanotribology, thus adding additional bricks to the house of truth.

The present book is written by authors whose backgrounds are mainly in mechanical engineering. They present individual contributions to the development of microscopic tribology, with significant effort being made to form a bridge between fundamental studies and applications.

I am confident that readers in both academic and industrial sectors will find the text interesting and beneficial to their understanding of an exciting aspect of modern tribology.

Duncan Dowson
Leeds, U.K. June 2008
DR. JIANBIN LUO, a professor at Tsinghua University and the director of the State Key Laboratory of Tribology (SKLT), China, received his Ph.D. degree from Tsinghua University in 1994. Since 1991, he has been working on nanotribology, especially thin film lubrication. He developed an interferometry technology in 1992 for measuring oil films with a resolution of 0.5 nm in vertical direction. He also has been working on Chemical Mechanical Planarization (CMP) since 2000. He has contributed to over 140 papers in the fields of tribology, and won the Chinese National Natural Science Prize (2001) and Chinese National Invention Prize (1996). Professor Luo is now vice president of the International Tribology Council and chairman of the Tribology Institution of the Chinese Mechanical Engineering Society. He is also an editorial board member of five journals, including *Surface & Coatings Technology, Surface Science and Engineering, and Chinese Science Bulletin.*

PROFESSOR YUANZHONG HU received his Ph.D. in 1985 and later joined the SKLT Tsinghua University as a professor. From 1989 to 1992, he worked in the Norwegian Technical University, Norway, and in Northwestern University, USA, as a postdoctoral fellow. He lived in the United States again (1997-1998) as a visiting scholar. His research interests include EHL, mixed lubrication, nanotribology, thin film rheology, molecular dynamics simulations, etc., and he has more than 70 papers published in international journals. Professor Hu received the Edmond E. Bisson Award from STLE in 2003. He is now an Associate Editor of the *Proceedings of IMechE, Part J, Journal of Engineering Tribology.*

PROFESSOR SHIZHU WEN graduated from the Department of Mechanical Manufacture of Tsinghua University in 1955, and then joined the faculty of Tsinghua University. In 1979, Professor Wen attended the Imperial College of Science and Technology, London University, as a visiting scholar majoring in tribology. He is a professor in the Department of Precision Instrument and Mechnology of Tsinghua University and was the director of the Tribology Institute of Tsinghua University and the director of the State Key Laboratory of Tribology from 1981 to 1996. Professor Wen has mainly devoted himself to basic research in tribology. He has conducted and directed more than 20 research projects, covering research fields of lubrication theory, friction and wear, and micromechanology. Professor Wen has published five monographs and more than 480 research papers. He and his colleagues have been honored with 19 awards, including the National Award in Natural Science, the National Invention Award, the National Excellent Book Award, and the Ho Leung Ho Lee Prize (Technological Science). In 1999, Professor Wen was elected as a member of the Chinese Academy of Sciences.

www.astm.org

ISBN: 978-0-8031-7006-3
Stock #: MON07