Subject Index

A

Absorption current effect, 37
a-c breakdown (see also Breakdown,
electrical characterization), 304–305
under constant a-c potentials, 306
model of, 304–306
under slowly rising a-c potentials,
305–306
Acetonitrile, conduction in, 241
a-c loss
test methods, 368
voltage breakdown determination,
275–276, 283
Acoustic detection devices, for breakdown
phenomena, 281–282
a-c potentials
constant, 306
slowly rising, 305–306
a-c stresses, 267–268
Activation energy, 47–54
a-c Wheatstone bridge, 155, 157
Additives
flow-improving, 333
metal deactivator, 344
Aerosols, fuel, 252
Aging
effects on conduction, 230–233
oxidation-related, test methods,
specifications, and values, 314–315
thermal breakdown, 271
thermal decomposition, 348–358
Aliphatic hydrocarbons, halogenated,
structure and properties, 420–422
n-Alkanes, electron mobility, Arrhenius
plot, 195
Alkenes, molecular structure, 384–385
Alkylbenzene, molecular structure, 28–29
Alkyl-substituted aromatic compounds,
structure and properties, 419–420
Alkynes, molecular structure, 385–386
Alphabet, Greek, 435
Amphiprotic liquids, 173
Amyl oleate, structure and properties, 412
Aniline point, 324
Antioxidants
actions, 166

groups, 167
metal passivator, 345
test methods, 362
API gravity scale, defined, 400
Aprotic liquids
conductivity, 236–241
defined, 172–173
physical properties, 238
structure, 238
Aqueous solutions
classification and characterization, 173
conductivity of, 233–235
electrical breakdown/prebreakdown,
250–251
used in dielectric engineering, 176
Area, units and equivalents, 431
Aromatic compounds
alkyl-substituted, structure and
properties, 419–420
aromatic ring structure, 317
mineral oil content, measurement, 329
molecular structure, 386–389
Aromatic hydrocarbons
history of, 407–408
structure, 174
ASA 3, effect on breakdown, 266, 284
Askarels
molecular structure and composition,
407–409
properties and uses, 409
ASTM Committee D27 (recommended
standards for electrical insulating
oils), 375–379
ASTM standards
D 86, 339
D 88, 336
D 92, 339
D 93, 339
D 97, 333, 337
D 117, 312, 337–338, 362, 366
D 129, 329
D 240, 341
D 445, 336
D 446, 336
D 611, 324
D 659, 339
D 664, 362
ASTM standards—continued
D 831, 364
D 877, 367, 393
D 924, 109, 368
D 971, 368
D 974, 362
D 1169, 368
D 1218, 322
D 1250, 335
D 1275, 329
D 1298, 335, 400
D 1500, 362
D 1524, 362
D 1533, 366
D 1563, 362
D 1698, 362
D 1807, 366
D 1816, 362
D 1818, 366
D 1819, 312
D 1819, 312
D 1827, 362
D 1903, 335, 399
D 2112, 360
D 2140, 29, 322
D 2144, 362
D 2159, 329
D 2161, 336
D 2162, 336
D 2224, 323
D 2225, 329
D 2285, 368
D 2298, 366
D 2300
 method a, 366
 method b, 365
D 2382, 341
D 2440, 360
D 2500, 337
D 2502, 323
D 2503, 323
D 2551, 339
D 2608, 362
D 2622, 329
D 2668, 362
D 2699, 337
D 2717, 335, 397
D 2766, 335, 397
D 2780, 365
D 2878, 323, 339
D 2887, 339
D 2945, 364
D 3120, 329
D 3228, 329
D 3238, 322
D 3300, 283
D 3339, 362
D 3431, 329
D 3455, 367
D 3487, 312, 316, 331
D 3612, 356, 362, 364
D 3635, 362
D 4055, 362
D 4059, 341
D 4310, 362
D 4768, 362
F 661–80, 366
ASTM test methods and specifications
 composition, 376
 contaminants, 379
 cooling, 376–377
 dissolved gasses, 378–379
 environmental effects, 377
 flammability, 377
 gassing, 378
 general, 375
 oxidation, 378
Atmosphere
 pressure effects on prebreakdown events, 291–293
 role in electrical breakdown, 271
Atomic orbitals, 151
Atomic polarization
 estimation, 23–24
 polarizability, 6
 relaxation time, 164
Atomic structure
 carbon atom, 380–381
 liquid insulating materials, 380–381
Atomization, liquids in an electric field, 252–253
Attachment, electron, 203
Attraction, molecular, 160
Auto-ignition temperature, evaluation
 methods, 339

B

Balsbaugh test cell, 110–111
 2TN50 two terminal concentric electrode, 112–113
 3HV35 three terminal concentric electrode, 110–111
 LD-3 three terminal parallel-plane electrode, 113–114
Barrier model, of dipole orientation, 54–56
Bauer complex compensation bridge, 122–124
Benzene
 composition, 408
 molecular structure, 386–388, 408
 polarity, 27–30
Benzene—continued
properties, 420
short range order, 160
Benzyl benzoate, structure and properties, 412
Benzyl neocaprate, structure and properties, 426–427
Berberich test cell, 108–109
Bifringence, in Kerr effect measurements, 186
Biphenyl, molecular structure and composition, 408
Bjerrum distance, 217
Boiling point, 170, 264–265
Bond angle, 390
Bond length, 389–390
Born’s formula, 161
Branch structures, characterization, 273
Breakdown, electrical (see also a-c breakdown; d-c breakdown;
Prebreakdown, electrical)
a-c model, 304–306
aqueous solutions, 250–251
atmosphere role, 271
breakdown voltage determination, 283
bubble/low density formation, 246–248
classification, 267–271
conductivity role in, 266
corona discharges, 281
d-c model
basic, 296–302
practical, 303–304
defined, 262
dielectric strength, 275
environmental effects, 269–271
historical overview, 272–273
implications, 306–307
intrinsic, defined, 271
laser-induced, 251
measurement
breakdown voltage determination, 275–276
current determination, 276–278
electro-optical techniques, 278–281
light/acoustic techniques, 281–282
time lag to, 248–249
in nonpolar liquids, 241–249
partial discharges, 281
prevention, 307
published experimental results, 282
radiation effects, 271
role of electronic properties, 244–246
stages, 241
temperature effects, 271
thermal, 271
time lag to breakdown measurements, 248–249
water, 250–251
British (NPL) test cell, 108–109
Brookfield viscometer method, 337
Bubble formation, 246–248, 272, 354
Bush structure, characterization, 284
Butyl benzoate, structure and properties, 413
Butyl borate, structure and properties, 414
Butyl carbonate, structure and properties, 414
Butyl citrate, structure and properties, 414
Butyl laurate, structure and properties, 414
Butyl naphthenate, structure and properties, 414
Butyl oleate, structure and properties, 413
Butyl ricinoleate, structure and properties, 413
Calcium naphthanate, contamination with, 70–71
Cameras
image converter, 278–281
ultra-high-speed, 278–281
Capacitance, units and equivalents, 432
Capacitance and dissipation factor bridge, computer-controlled, 120–121
Capacitors, liquids for, 425–427
Carbon
atomic structure, 382
carbon-type determination, 325
Carbon-carbon double bonds, 384–385
Carbon-carbon triple bonds, 385–386
Carbon-hydrogen bonds, 383
Carbonyl, infrared absorption, 345–346
Castor oil, 94–98
Charge
movement, losses due to, 164–165
transfer effect on positive charge carrier, 203
units and equivalents, 432
Charge carriers
generation
collisional ionization, 188
field emission, 186–187
field ionization, 186–187
high energy radiation, 179–181
injection at electrodes
electric double layers, 182–184
electro-optical measurements, 185–186
process of, 184–185, 221, 296–298
Charge carriers, generation—continued

Charge carriers, generation—continued

Liquid classification based on,

- by microscopic particles, 187–188
- photoeffect, 178–179
- photoionization, 178–179
- solution of ionizing compounds, 181–182
- thermal excitation, 117–118

Transport properties

- attachment, 203
- charge transfer, 203
- electron mobility, 192–197
- hole mobility, 203–204
- injection effects on conduction, 221
- ion mobility, 197–201
- measurement methods, 188–192
- models, 204–206
- particle motion, 197–201
- recombination, 201–203

Chemical bonds, 150–152

Chemical composition

- effects on physical properties of insulating oils, 318
- test methods, specifications, and values, 313

Chemical transformations, conductivity, 230–233

Chlorides

- contamination with, 359
- inorganic, test methods, 367

Chlorinated diphenyl oxides, molecular structure and composition, 409–410

Chromatographic techniques

- gel permeation
 - molecular weight distribution determination, 323–324
 - naphthenic oils, 319–320
 - for oil characterization, 322

Classifications

- aqueous solutions, 173
dielectric fluids, 263
electrical breakdown, 267–271

- liquids
 - based on charge carrier generation, 172–173, 172–173
 - physico-chemical, 172–173
 - mineral oils, 400–401
 - water, 173

Clausius–Mosotti equation, 11, 153–154

Clausius–Mosotti field, 8–10

Cleveland open-cup method, for flash/fire points, 339

Cloud point

- defined, 332
defined, 39
dielectric fluids, 66, 266
role in breakdown process, 266
Contaminants
 in mineral oils, 407
 test methods and specifications, 315, 379
 values, 315
Cooling
 properties of insulating mineral oils, 329–338
 test methods and specifications, 313–314, 376–377
 typical values, 313–314
Copper content
 monitoring, 345
 test methods, 362
Corona inception voltage, 281, 305
Covalent bonds, 151
 in liquid insulating materials, 381–383
 molecular geometry, 389–390
 polar, 383–384
Critical data, table of, 170
Cryogenic fluids, characterization, 265
Crystals, electron mobility in, 204
Cumylphenylethane, structure and properties, 426–427
Current
electrode, temporal variation, 219–220
 measurements, 276–278
 units and equivalents, 432
Current density, 39
Cycloheptatriene cation, molecular structure, 389
Cyclohexyl ricinoleate, structure and properties, 413
Cyclopropenyl cation, molecular structure, 389

D

Damping factor \(\tau \), 102, 104
d-c breakdown (see also Breakdown, electrical basic model), 296–302
 charge injection process, 296–298
 constant d-c potentials, 303–304
 fast event of, 302
 negative streamers, 300
 partial discharges, 301
 positive streamers, 300–301
 practical model, 303–304
 primary/secondary streamer growth, 300
 slowly rising d-c potentials, 303
 streamer development, 298–300
d-c potentials
 constant, 303–304
 slowly rising, 303
d-c stresses, 267–268
Debye–Hückel atmospheres, 58
Debye model, of macroscopic viscosity, 44
Debye screening length, 184
Decomposition processes
 gas absorbing/evolving behavior, 356–358
 gas formation, 348–356
Delocalized state, electron transport in, 204–205
Density
 defined, 335
 dielectric fluids, 264–265
 insulating oils, determination, 330
 test methods, 335–336
 units and equivalents, 431
Dibutyl silicate, structure and properties, 415
Dielectric constant (see Permittivity)
Dielectric fluids
 applications, 251–254
 chemical characteristics, 265–266
 classification, 263
 defined, 262–263
 electrical breakdown (see Breakdown/
 prebreakdown, electrical)
 electrical properties, 266
 physical properties, 264–265
 physico-chemical characteristics, 263–264
 under a-c conditions, 64–78
 and breakdown, 358–359
 breakdown voltage, 275–276, 283, 367
dipolar relaxation, 165–167
electronic conduction-related, 77–80
 frequency effects, 40, 85–87
 induced dipoles, 167
interfacial relaxation, 168
ionic conduction-related, 56–77
 loss factor, 37
 measurement, 42, 106–108
high frequencies, 126–140
 intermediate frequencies, 120–123
low frequency, 115–120
 lumped and distributed parameter
 techniques, 106–108
 lumped-parameter-specimen test cells, 108–115
upper and high radio frequency range, 123–126
mobile charge carrier effects, 56
molecular theories, 43–56
movement of charges, 164–165
Dielectric loss—continued
 space charge polarization and relaxation, 168
 temperature effects, 87–89
Dielectric strength of a material, 275, 358
Dielectrophoretic processes, 253–254
Diethyl hexyl adipate, structure and properties, 414
Diethyl hexyl phthalate, structure and properties, 415
Diethyl hexyl sebacate, structure and properties, 415
Diffusion coefficient, 172
Dilution, Ostwald’s law of, 234
Dimethylsiloxane silicone fluids, 98–101
Dioctylphthalate, structure and properties, 426–427
Dipolar relaxation, losses due to, 165–167
Dipole–dipole interactions, 159
 characterization, 390–391
 hydrogen bonds, 391–392
Dipole moment
 Debye equation, 9–10
 defined, 384
 examples of, 155
 induced, 6
 Kirkwood equation, 18–20
 Onsager equation, 13–18
 permanent, 6–8, 153
 and permittivity, 23–25
 in silicone fluids, 32
 specific, 7
 units and equivalents, 431
 zero, 152
Dipole orientation
 activation energy for, 50–54
 barrier type model, 54–56
 quantum mechanical correction (Van Vleck), 13
Dipole rotation, hindered, 19–20
Discharges
 in d-c breakdown, 301–302
 effects on breakdown, 281, 293–295, 305
Dispersion interaction, 159
Dispersive Fourier transform spectrometry, 140
Disposal, of insulating oils, 339
Dissipation factor
 characterization, 396
 defined, 37
 in Hartshorn–Ward circuit, 124–125
 in reentrant cavity measurement system, 128–129
Dissolved-gas content
 IEC and IEEE codes for, 349
 specifications, 378–379
 test methods, 362–364, 378–379
Distribution function
 radial, 4
 relaxation times, 80–85
Ditolyether, structure and properties, 426–427
Double bonds, carbon-carbon, 384–385
Double layer, electric, 182–184, 229–230
Duval’s triangle, 350
Dye lasers, 178

E

Electrical breakdown, electrical (see Breakdown/prebreakdown)
Electrical conduction (see Conduction, electrical)
Electrical conductivity (see Conductivity, electrical)
Electrical decomposition, 348–358
Electric double layer
 characterization and schematics, 182–184
 at metal/insulating liquid interface, 229–230
Electric field, effects on electron mobility, 197
Electric strength, of insulating liquids, 393
Electric stress, units and equivalents, 433
Electrodes, geometries
 commonly used, 270
 role in breakdown, 269
Electrodialysis, 237–239
Electrohydrodynamic conduction, in nonpolar liquids, 229–230
Electrohydrodynamic mobility, 201
Electrokinetic potential, 201
Electrolytes, charge carrier generation by, 181–182
Electrolytic conduction, in nonpolar liquids, 214–219
Electronegativity, 383
Electronic conduction, losses due to, 77–80
Electronic polarization, relaxation times, 164
Electronic properties
 energy levels in dielectric liquids, 161–162
 liquids, 161–163
Electron mobility
 in n-alkanes, Arrhenius plot, 195
 in condensed matter, 272
electric field effects, 197
high pressure effects, 197
magnetic field effects, 197
in nonpolar liquids, 194
in polar liquids, 198
structure effects, 193
temperature effects, 193
Electrons
high energy
ionization and excitation events produced by, 179–180
reactions in dielectric liquids, 179–180
orbitals, 380–381
transport models, 204–206
Electro-optical devices
for breakdown testing, 278–281
development, 273
Electrophoresis, 200
Electrostatic HV machines, 252
Electroviscous effects, 171
Energy
loss, expression for, 37–38
units and equivalents, 432
Environmental effects
on electrical breakdown, 269–271
standard test methods and specifications, 377
Equivalent circuits
lossy capacitor test cell, 155–156
parallel, 38–39
transient response test circuit, 116–117
Equivalent conductivity, ionic, 200
Esters
aliphatic, 410
aromatic, 411
characterization, 265
complex, 411
organic
characteristics, table, 412–415
characterization and synthesis, 175
molecular structure and composition, 410–411
phosphate, 416
Excitation events, high energy radiation-related, 179–181
polyolefins and silicones, 400
requirement for, 338
test methods, 339
Flammability
insulating liquids, 399–400
insulating mineral oils, 338–339
specifications, 377
test methods, 339–341, 377
Flash point
defined, 338
minimum accepted value, 338
polyolefins and silicones, 400
test methods, 339
Flow properties
insulating liquids, 396–399
insulating oils, 330–335
Fluorocarbons, physical and electrical properties, 422
Force, units and equivalents, 431
Fourier transformation procedures
Fourier transform spectrometry
dispersive, 140
oil characterization with, 322
pulse response measurements, 117–118
Free wave methods, 137–140
Freons, characterization, 265
Frequency
effects
on dielectric losses, 85–87
on energy loss, 40
on ionic conduction, 59–61
microwave, and loss, 167
and polarization, 24–25
Frequency response
defined, 85
insulating liquids, 85–101
Fröhlich equation, 21–22
Fuel aerosols, generation, 252
Furan, molecular structure, 389–390
Furanic compounds, in insulating oil, 354
Furfural content, test methods, 366
G
Gamma rays, conductivity induced by, 225–227
Gas
absorbing/evolving behavior, 356–358
absorption by insulating liquids, 396
dissolved-gas analysis
IEC and IEEE codes for, 349
test methods and specifications, 362–364, 378–379
formation, 348–356
solubility in oil versus temperature, 355
Gassing
- specifications, 378
- test methods, 365–366, 378

Gel permeation chromatography
- molecular weight distribution determination, 323–324
- naphthenic oils, 319–320

Geminate recombination, 179

Geometry, of covalent molecules, 389–390

Gouy–Chapman layer, 183, 185

Gouy–Chapman theory, 184

Greek alphabet, 435

Half-life, of ion pairs, 202

Halogenated hydrocarbons, aliphatic, structure and properties, 420–422

Handling, of insulating oils, 339

Hartshorn–Ward test cells, 113–116
- modified susceptibility variation circuit, 123–126

Heat transfer, properties of insulating mineral oils, 329–330

Helium, liquid, 175–176

Helmholtz layer, 184, 200–201

Heterocyclic molecules, characterization, 265

High field conductivity, of nonpolar liquids, 227–228

High pressure conductivity, 222–225
- effects on electron mobility, 197

High voltage apparatuses, applications of dielectric liquids, 251–254
- generation, 252

Hole mobility characterization, 203–204
- as function of temperature, 204

Hopping transport, electrons in nonpolar liquids, 205

Hückel rule, 388

Hund's rule, 382

Hückel, Erich, 388

Hydrocarbons
- aromatic
 - history, 407–408
 - structure, 174
- classes, 312, 316

Hydrocarbons, electrical dispersion, 252–253
- molecules in oil, structure, 317
- sulfur-containing, 342–344
- synthetic
 - structural formula, 176
 - structure and properties, 417–425

Hydrogen bonds, 159–160, 382

IEC codes for dissolved-gas analysis, 349

IEC publications
- 74, 360
- 156, 393
- 296, 331
- 296–1982, 312
- 567, 362–363
- 588, 367

IEC-type test cell, 109–110

IEEE codes for dissolved-gas analysis, 349

IEEE Guide 64 (1977), 316

Image converter cameras, 278–281

Impulse strength, 393

Impurities, role in breakdown, 284, 291

Impurity conduction, 208

Index of refraction, variation with frequency, 103–106

Induced dipoles, losses due to, 167

Infrared spectroscopy, oil characterization with, 322

Injection, charge carriers, 221

In-service oxidation resistance, 341–348

Interaction potential, Lennard–Jones, 160

Interfacial relaxation, loss due to, 168

Interfacial tension, 345
- acceptable limits, 346
- test methods, 368

Interferometry, Michelson optical type, 137–138

Intermolecular forces, 390–392

Ion exchange, water purification by, 235–237

Ionic conduction
- frequency effects, 59–61
- losses due to, 56–77

Ionic mobility
- expression for, 60
- ionic losses due to, 62–63
- jump model, 64–65, 172

Ionic polarizability, 6

Ionization
- collisional, 188
events, high energy radiation-related, 179–181
field, charge carrier generation by, 186–187
Ionization energy, nonpolar liquids, 161–162
Ionizing compounds, charge carrier generation by, 181–182
Ion mobility
equivalent conductivity, 200
in nonpolar liquids, 198
in polar liquids, 198–200
Iso-amyl benzoate, structure and properties, 412
Iso-propyl benzoate, structure and properties, 412
Isopropylbipyphenyl, structure and properties, 425–426
Isothermal compressibility
expression for, 169
values for, 170
K
Kerr effect measurements, 185
Kirchoff’s edge correction formula, 127
Kirkwood equation, 18–20
L
Langevin function, for orientation polarizability, 7
Lasers, dye, 178
Laser triggered switching, 251
Length, units and equivalents, 431
Lennard–Jones potential of interaction, 160
Light emission, breakdown-related, 281–282
Loss factor
defined, 37
as function of frequency, 167
Loss index (see Loss factor)
M
Macroscopic viscosity, Debye model, 44
Magnetic field, effects on electron mobility, 197
Mass, units and equivalents, 431
Mass spectrometry
characterization of insulating mineral oils, 321
naphthenic and paraffinic oils, 321
Maxwell–Wagner polarization, loss due to, 168
Mechanical tension, expression for, 169
Melting point, of dielectric fluids, 264–265
Metals, contamination with, 358–359
Methylated diphenylethane, structure and properties, 425, 427
Methyl benzoate, structure and properties, 413
Methyl stearate, structure and properties, 413
Micelles, as charge carriers, 201–202
Michelson optical type interferometer, 137–139
Mineral oils
aromatic
benzene rings, 27–29
and dipole loss, 89–91
characterization, 320
chemical composition, 312–329
classification, 400–401
composition, 400–407
contaminants, 407
contamination, 70
cooling properties, 329–338
with differing aromatics, behavior, 67–68
dipole loss
frequency effects, 85–87
oxidation effects, 91–94
temperature effects, 87–89
flammability, 338–339
handling and disposal, 339
insulation-related properties, 341–368
molar polarization vs. reciprocal absolute temperature, 35
molecular structure, 30–31, 400–407
oxidation reaction, 58
polarity, 34–35
production technology, 318–319
properties, 28
used in dielectric engineering, 406
Mobility
electrohydrodynamic, 201
electron, 192–197
in n-alkanes, Arrhenius plot, 195
in nonpolar liquids, 194
structure effects, 193
temperature effects, 193
ionic
ionic losses due to, 62–63
jump model, 64–65, 172
Molar polarization, 10–13
atomic, 103
Molar polarization—continued
complex, under a-c conditions, 44
defined, 10
electronic, 103
gases, 11
liquids, 11–12
total, Onsager equation, 18
Molecular orbitals, in pi and sigma bonds, 152
Molecular size distribution, naphthenic oils, 319–320
Molecular structure, insulating mineral oils, 319–322, 400–407
Molecular weight distribution,
determination, 319, 323–324
Mono/dibenzyltoluene, structure and properties, 426, 428
Multi-Amp dielectric liquid test cell, 109–110
Multiframe cameras, for breakdown testing, 278–281

N
Naphthalene, molecular structure, 389
Naphthenic molecules
naphthenic ring structure, 317
polarity, 30
structure, 174
Naphthenic oils
mass spectrometric characterization, 321
molecular size distribution, 319–320
Neutralization number, 345
acceptable limits, 346
test methods, 361
Newtonian liquids, 331, 336, 397
Nitrobenzene, conduction in, 240
Nitrogen
contents determination, 329
liquid, 175–176
Nitromethane, dielectric constant,
temperature effects, 26–27
Nonpolar liquids
defined, 152
electron mobility, 194
ionization energies, 161–162
ion mobility in, 198
photoconductivity measurement, 178
NPL test cell
characterization, 108–109
modified two-terminal, 110, 112
Nuclear magnetic resonance spectrometry,
oil characterization with, 322
Nyquist frequency, defined, 118

O
Olefins
molecular structure, 384–385
structure and properties of polyalpha-olefins, 418–419
Onsager equation, 13–18, 34
Optical methods, 137–140
quasi-optical methods, 137
Orbitals
antibonding, 381–382
electron, 380–381
Order, short range molecular, 160
Organic esters
characterization and synthesis, 175
structure and properties, 410–415
Orientation, dipole, quantum mechanical correction (Van Vleck), 13
Orientation polarizability, 6–7
Orientation polarization, relaxation time, 164
Ostwald’s law of dilution, 234
Oxidation
effect on dipole loss, 91–94
mineral oils, 58, 406–407
resistance, 342–348
resistance test methods, 360–361
test methods and specifications, 314–315, 378
values, 314–315
Oxidation inhibitors, 342, 406–407
Oxygen, role in breakdown, 284, 291

P
Paint, spraying, 252
Paraffinic oils
mass spectrometric characterization, 321
soaking effect, 334
Paraffin molecule
polarity, 25–27
short range order, 160
structure, 174, 317
Partial discharges
in d-c breakdown, 301–302
effects on breakdown, 281, 293–295, 305
Particles
in commercial liquids, charge carrier generation by, 187–188
conduction induced by, 221
contamination, 358
content, test methods, 366–367
electrophoresis, 200–201
Pellat–Debye equations, 42–43, 64
Pentachlor diphenyl, dielectric behavior, 35–36
Perfluorocarbons
 characterization, 265
 synthesis, 174
 used in dielectric engineering, 173–175
Permanent dipole moment (see Dipole moment, permanent)
Permittivity, 152–159
 aromatic oils, 27–28
 characterization, 394–396
 Clausius–Mosotti field, 8–9
 Debye equation, 9–10
 defined, 5
 examples, 155
 Fröhlich equation, 21–22
 Kirkwood equation, 18–20
 low frequency value, 5
 measurement, 106–108
 high frequencies, 126–140
 intermediate frequencies, 120–123
 low frequency, 115–120
 lumped and distributed parameter techniques, 106–108
 lumped-parameter-specimen test cells, 108–115
 upper and high radio frequency range, 123–126
 mineral oil, typical, 407
 models, difficulties with, 23
 molar polarization, 10–13
 atomic, 103
 complex, under a-c conditions, 44
 electronic, 103
 gases, 11
 liquids, 11–12
 total, Onsager equation, 18
 and relative permittivity, 153–154
 relaxation time, 40
 specific, 7
 total, determination, 40
Polar liquids
 electron mobility in, 198
 ion mobility in, 198–200
Polar oxidation compounds
 monitoring, 345
 test methods, 362
Polyalpha-olefins, structure and properties, 418–419
Polybutenes
 structure and properties, 417–418
 synthesis, 417
Polychlorinated biphenyls
 contamination, test method, 341
 dielectric behavior, 35–36
 handling and disposal, 339
 substitute liquids, 94–95
Polydimethylsiloxane
 atomic and electronic polarization, 32–33
 characterization, 424
 component dipole moment, 32
 physical and electrical properties, 423
Polymerization, conduction effects, 230–231
Polyolefins, flammability, 400
Polyphenylmethyl siloxane, 424
P orbitals, 380–381
Pour point
Pour point—continued
determination, 331
measurement methods, 337
paraffinic oils, 333–335
Power, units and equivalents, 432
Power generators, types, 267–268
Prebreakdown, electrical
bush concept, 284
effects of partial discharges, 293–295
laser-induced, 251
and molecular composition of fluids, 291
pressure effects, 291–293
role of impurities, 284, 291
streamers
cconcept of, 284
growth effects, 291–293
tree concept, 284
Pressure
high
cconductivity, 222–225
effects on electron mobility, 197
erole in electrical breakdown, 271
units and equivalents, 432
Propylbiphenyl, structure and properties, 425–426
Propylene carbonate
characterization and synthesis, 176–177
conduction in, 236–240
conductivity, electron injection-related, 184
Protogenic liquids, 173
Protophilic liquids, 173
Pseudoplastic fluids, 332
Pulse generators
trapezoidal, 268
types of, 268
Pulse response methods, 117
Purification, water, 235–237
Pyrrole, molecular structure, 389–390

Q
Quality factor
defined, 106
resonant cavity, 135–136
Quantum mechanics, correction to dipole
orientation (Van Vleck), 13
Quantum number, 150

R
Radial distribution function, 4
Radiation
cconductivity induced by, 225–227
high energy, ionization and excitation
events produced by, 179–181
role in electrical breakdown, 271
Rayleigh limit, 252
RC-type bridge measuring techniques, 120–123
Reclamation, limits to, 346–347
Recombination
ccharge carriers, 201–203
crate constant, 202
Recombination coefficient, 202
Reentrant cylindrical cavity measurement
technique, 126–128
Refractive index
defined, 322
test methods, 322–323
Relaxation, 40
defined, 163
dipolar, 165–167
distribution, 80–85
intrinsic, 44–45
space charge, 220–221
temperature effects, 46–54
Repulsion, molecular, 160
Resistance, units and equivalents, 432
Resistivity
insulating liquids, 393–394
test methods, 368
Resonance absorption, 102–106
Resonant cavities
H_{01} mode, 134–135
variations, 134
Reststrahlen technique, 104
Reverse osmosis, water purification by, 235–237
Richardson equation, 209–211
Roberts–von Hippel technique, 130–131
Safety, test methods, specifications, and
dvalues, 314
Scheiber bridge, 118
Schering bridge, 118, 120
Schlieren photography, 230, 278–281
Schottky effect, 210
Sellmeier equation, 104
Short range molecular order, 160
Sigma bonds, 151, 384
Silicone
structure and properties, 422–425
synthesis chemistry, 422–424
Silicone fluids
dimethylsiloxane, 98–101
flammability, 400
molar polarization versus reciprocal absolute temperature, 35
molecular structure, 31–32
oils
 characterization and synthesis, 175
 siloxanes, 265
polarity, 34–35
properties, 28
Siloxanes, characterization, 265
SI units
 dynamic viscosity, 336
 kinematic viscosity, 336
prefixes for, 436
Sludge content, 346–347
test methods, 361–362
Solubility coefficients, determination, 365
Solvation number, 199
S orbitals, 380–381
Space charge polarization
 loss due to, 168
 relaxation time, 164
Space charge relaxation, 220–221
Specific gravity, defined, 4041
Specific heat
 defined, 171, 398
 determination, 397–398
 insulating oils, determination, 330
test methods, 335
values for, 171
Spectrometry
 Fourier transform (see Fourier transformation procedures)
 time domain techniques, 136–137
Spectrum analyzers, for electrical breakdown measurements, 282
Spraying, of paint, 252
Square pulse technique, 117
Step pulse technique, 117
Stern layer, 184
Stoke’s law, 60, 198
Streamers
 characterization, 273
 concept of, 284
development, 298–300
growth
 primary, 300
 secondary, 300
growth in hydrocarbons, 286–289
negative, 273, 300
positive, 300–301
Streaming liquids, conductivity, 229–230
Stress, electrical
 role in breakdown, 267–268
types of, 267–268
Stress resistance, test methods,
 specifications, and values, 315
Sulfates
 contamination with, 359
 inorganic, test methods, 367
Sulfur contents, determination, 329
Supersaturation phenomena, 354
Surface energy
 defined, 170
 values for, 171
Susceptance variation methods, 123–126
Switching, laser triggered, 251
Synthetic hydrocarbons (see also specific hydrocarbon)
 structure and properties, 417–425
T
Temperature
 and activation energy, 47–54
effects
 on dielectric losses, 87–89
 on electron mobility, 193
 on ionic conduction, 56–59
 on nitromethane dielectric constant, 26–27
 on relaxation time, 46–54
 role in electrical breakdown, 271
Temporal variations, electrode current in nonpolar liquids, 219–220
Tetra-hydrofurfuryl oleate, structure and properties, 412
Tetrahydro furfuryl oxalate, structure and properties, 415
Thermal breakdown, defined, 271
Thermal conductivity, 171–172
 characterization, 397
 of dielectric fluids, 264–265
 expression for, 397
 insulating oils, determination, 330
 liquids at 20°C, 172
test methods, 335
Thermal decomposition, 348–358
Thermal excitation, charge carrier generation by, 117–118
Thermal expansion
 expression for, 169
 values for, 170
Thermal properties, insulating liquids, 396–399
Thermo-physical properties, liquids, 169–172
Thin liquid films, conductivity, 222–223
Thiophene, molecular structure, 389
Thompson–Harris bridge, 118
Time domain spectrometric techniques, 136–137
Toxicity, test methods, specifications, and values, 314
Transformer ratio arm bridge, 120
microcomputer-controlled, 120–122
Transient response method, for steady state responses, 116–117
Translational polarizability, 9–10
Transmission line methods, 129–131
Trapezoidal pulse generators, 268
Trap modulated transport, electrons in nonpolar liquids, 205
Tree structures, characterization, 273, 284
Tri-cresyl phosphate, structure and properties, 413
n-Tridecane, photoconductivity, 179
Triphene, molecular structure, 390
Triple bonds, carbon-carbon, 385–386
Tri-xylenyl phosphate, structure and properties, 413
van der Waals forces, 159, 392
Vince low frequency bridge, 118–120
Viscometers, 336–337
Viscosity
absolute, units and equivalents, 432
defined, 171, 397
dielectric fluids, 264–265
dynamic, 330–331
defined, 336
insulating oils, 51, 330–335
kinematic
characterization, 397
units and equivalents, 432
macroscopic
correction for, 47
Debye model, 44
mutual, 47
role in breakdown, 291
test methods, 336–337
values for, 171
Volatile content, test methods, 339–341
Voltage
breakdown, determination, 275–276, 283, 267
units and equivalents, 433
Volume, units and equivalents, 431
Wagner earth connection, 118
Walden's rule, 57, 198
Walther equation, 331
Water
characterization and classification, 173
conductivity of, 233–235
contamination, 358
ccontent, test methods, 366
dielectric properties, 155
electrical breakdown/prebreakdown, 250–251
impurity effects in nonpolar liquids, 218–219
purification, 235–237
role in breakdown, 284, 291
used in dielectric engineering, 176
Wax
formation, 319, 332–333
X-wax content test methods, 366
Wein effect, 67
Wheatstone bridge, 155, 157
Wien effect, 65
X
X rays, conductivity induced by, 225–227
Z
Zeta potential, 201