Subject Index

A
- Alloying additions, effects on constitution, 28-29
- Alloying elements, 210-211
- α-particle, production, 84
- Alumina, insulating layer, 59
- Annealing, 205-207
- Arrhenius plots
dissolution rate, 59-60
hydrogen diffusivity, 63-64
- ASME Boiler and Pressure Vessel Code
Section VIII, 2
- ASME Code Case N-47, 2, 199
- ASTM E 706, 81
- ASTM E 693, 81
- Auger electron spectroscopy (AES), 42
- Austenitic stainless steels
helium effects, 213
hydrogen diffusivity, 63-64
in-reactor creep-rupture, 135
irradiated, microstructure, 98-99
limitations for fusion, 2
- Austenitization, effect on displacement damage effects, 146
- Austenitization temperature, effect on ductile-brittle-transition temperature, 145

B
- Beryllium neutron multiplier, 61
- Bolts, high chromium martensitic steels, 11
- Boron
doping problem, 163
effect on size and density of voids, 95-96
- helium bubbles and, 161
- irradiated steels, helium effects, 158-162
- segregation, 43
- Brazing, 78-79
- Breeder outside tube, 17-18
- Bubbles, 82
- Burgers vectors, 81-82, 97, 113

C
- Carbide particles
as source of cracks, 146
- spherical, 153
- γ-carbide phase, 106-107
- Carbide precipitation, 35
- Carbon, as alloying element, 210
- Casings and valve bodies, 11
- Cavities, 82
- formation at prior austenite grain boundaries, 185
- growth rates, 98
- irradiation produced, 98-99
- CETA steels, irradiated, Charpy curves, 139-140
- 10 CFR Part 61, 3
- Charged particle irradiation, effect on precipitate phase, 105
- Charpy curves
before and after irradiation, 139-140
compared to fracture toughness curves, 168-169
comparison of unirradiated and irradiated, 151-152
cyclotron-injected helium, 162
irradiated MANET II and CETA steels, 139-140
ODS steels, 155
- Charpy impact curves
annealing and, 205
unirradiated and irradiated, 159
- Charpy impact properties, irradiated Cr-Mo steels, 149
- Charpy impact tests, 168
- Charpy impact toughness, irradiation effects, heat treatment and, 144
- Charpy properties, tantalum effect, 153
- Charpy V-notch ductile-brittle transition curves, heat treatment effects, 46-50, 46-48
- Charpy V-notch impact transition curves, 48-49, 51
- Chi phase, 39, 107-108
- Chromium
as alloying element, 211
composition profile across prior austenite grain boundaries, 44
effect on constitution of Fe-Cr-C alloys, 28-29
role in phosphorus segregation, 45
- segregation, 43
- Chromium-rich ferrite, precipitation, 105-106
- Cleavage fracture toughness, Laves and γ-phases, 143
- Clusters, 81, 51
- Coffin frequency modified endurance approach, 181
- Coffin-Manson relation, 178-179
- Cold cracking, 75-77
- Compressive hold periods, effects on fatigue endurance, 183-184
- number of fatigue cycles to failure, 183
- Continuous-cooling-transformation diagram, 32-33
- fusion welding, 75, 77
- Continuum damage mechanism, 200
- Corrosion, aqueous, water coolant, 56-58
- Corrosion rates, 57-58
- lithium-lead, 59
- Cracking, critical hydrogen concentrations, 65, 68
- Cracks, carbide particles as source, 146
- Creep, 51-53
definition, 113
see also Irradiation creep
- Creep coefficient, 115
- in-pile creep, 120
temperature dependence, 115, 118
- Creep compliance, 115
- Creep deformation, 200
- Creep-fatigue, 183-185
- Creep-fatigue crack growth interaction equation, 201
- Creep resistance, high chromium martensitic steels, 7
- Creep-rupture, 51-53
- in-reactor, austenitic steels, 135
- post-irradiation, 136
- Cr-Mo steels
hydrogen embrittlement, 65-66
irradiation hardening by fission neutrons, 122-127
- Cyclic behavior, subgrain size effects, 187
- Cyclic-hardening relationship, 187
- Cyclic softening, 185-186, 191
- thermal fatigue-tested, 196
- Cyclic strength, 185-188
- Cyclic stress-strain constants, 187
- Cyclic stress-strain curves, 187-188
- Cyclic stress-strain response, predicted and experimental, 187-188
- Cyclotron-injected helium, 162-163

D
- Defect cluster, 81-82
- Deuterium-tritium fuel cycle, 82
- Diametral strain, as function of fluence, 116-117
- hoop stress, 116-118
- Diffusion, hydrogen isotope effects, 63-64
- Diffusion coefficient
apparent, temperature dependence, 63-64
effective, 63
- Diffusion welding, 75
- Dimensional stability, 13
see also Swelling
- Dislocation channel deformation, 127
- Dislocation loops, 81-82, 97, 143
- irradiation-produced, 123
- Dislocations, 113
- Displacement damage effects, 139-156
- austenitization effect, 146
- chemical composition effect, 149-155
Displacement damage effects (continued)

Fatigue, see Strain-controlled low-cycle fatigue; Stress-controlled high-cycle fatigue

Fatigue crack growth, 197–199

Fatigue crack growth rate, 199–201

Fatigue transition life, 177–178

Fe-Cr alloys, irradiation-induced phases, 106–107

α'-Ferrite, precipitation, 105–106

δ-Ferrite, 210

formation suppression, 30–31

improved ductility and toughness, 142

Ferrite-forming elements, 28

Ferritic steels

comparison of ion, electron, and neutron irradiation, 96

low- and reduced-activation considerations, 2–3

low-swelling character, 96

non-transformable, resistance to elevated-temperature helium embrittlement, 137

optimization, 212–213

radiation-induced segregation, 103–105

reduced-activation, 3

sodium-cooled, 12, 14

spherical carbide particles, 153

stress-strain curves, 122–123

F82H steel

activation property, 20–21

activation response functions, 21–22

Fission reactors, neutron-energy spectra, 82–83

Fracture, quasi-cleavage, 146–147

Fracture behavior

radiation-induced segregation, 158

thermal stability, 45–47, 53

Fracture mode, effects of hydrogen charging and aging, 65–66

Fracture stress, 153, 167

Fracture toughness, 167–176

conventional high-chromium steels, 168–173

dependence on mode III load component, 67

as function of crack angle, 173–174

temperature, 169–170

initiation, increase with increasing chromium and tempering temperature, 169

MANET I steel, 173

other approaches, 175–176

reduced-activation steels, 173–175

static, 168

thermomechanical treatment, 169

TIG weldments, 173

Fracture toughness curves, compared to Charpy curves, 168–169

Fusion

advantages and limitations of martensitic steels, 1–2

limitations, austenitic stainless steels, 2

Fusion materials research, simulation techniques, 85

Fusion neutron environment, irradiation damage, 82–83

Fusion reactors, 14–23

hydrogen isotope effects, 68–69

activated and quenched steels, 18–23

activation property, 20–21

composition, 19

impurity concentrations, 21

parameters, 19

systems and components, 15–17

tritium breeding blanket concepts, 16–18

Fusion welding, 71–77

defects, 74–77

microstructural characteristics, 71–74

processes, 71

Fusion zones, microstructures, 71–73

G

Gas tungsten arc welds, micro-hardness profiles, 73

Gas turbines, high chromium martensitic steels, 5

G phase, 107–108

Grain boundary composition, during tempering, effect of molybdenum, 43

H

Hardening, 208–209

detrimental effects, 209

ductile-brittle-transition temperature and, 143–144

fission neutrons, 122–128

conventional Cr-Mo and reduced activation steels, 122–127

oxide dispersion-strengthened steels, 128

helium effects, 129–133

by 14 MeV neutrons, 128–129

Hardness

helium effects and, 160

martensite, 33

tempering effect, 146

Heat-affected zones

liquation cracking, 74–75

microstructures, 71–73

schematic diagram, 72

simulated, microstructures, 168–173

Helium

cyclotron-injected, 162–163

effect on swelling, 94–96

Helium bubbles, 157–158

boron and, 161

at grain boundaries, 135

intergranular, stress-induced growth, 135

prior austenite grain boundaries, 136–137

Helium effects, 156–162, 209, 213

boron-doped steels, 158–162

hardening, 129–133

nickel-doped steels, 156–158

past and future, 163

Helium embrittlement, elevated-temperature, 135–138

resistance to, bcc iron-based alloys, 135–137

High-chromium ferritic steels

allowable impurity concentrations, 21

ductile-brittle transition temperature, 14

limitations, fast breeder reactors, 14

High-chromium martensitic steels, 5–23

allowable impurity concentrations, 21

boiler components, 7, 10

compositions, 6, 8–9

creep resistance, 7

development, 7
ductile-brittle transition temperature, 14
fusion reactors, see Fusion reactors
gas turbines, 5
limitations, fast breeder reactors, 14
precipitation, normalized-and-tempered, aged, and creep-rupture tested, 39–40
stainless characteristics, 5
steam power plants, 5–6
turbine components, 10–11
uses, 5
see also Fast breeder reactors
High-cycle fatigue, see Stress-controlled high-cycle fatigue
High-pressure induction welding, 75
High-frequency induction welding, 75
High-pressure/low-pressure combination rotor shafts, 10
HT9 steel, hydrogen embrittlement, 64–65
Hydrogen charging, effects on tensile ductility and fracture mode, 65–66
Hydrogen cracking, 75–77
Hydrogen effects, 209
Hydrogen embrittlement, 64–68
9Cr-1Mo steel, 65–66
HT9 steel, 64–65
irradiation effects, 68
MANET steels, 65, 67–68
manifestation, 63
mechanisms, 67–68
reduced-activation steels, 65, 67–68
Hydrogen isotope effects, 63–69
fusion reactor systems, 68–69
solubility, diffusion, and permeation, 63–64
see also Hydrogen embrittlement
Hysteresis loops, 177–178, 185

Impact, 46–53
Impact curves, annealing and, 205–206
Impact properties, irradiation effects, 139–163
cyclotron-injected helium, 162–163
Inherent creep strength, 52
In-pile creep, creep coefficient, 120
Interfacial segregation, stress-driven, 45
Intergranular attack, 56
Intergranular cracking, 181
Intergranular fracture, irradiated ferritic steels, 158
Internal gas pressure, 135
Interstitials, 97–98
Inverse Kirkendall effect, 103
Ion irradiation, 96–97
Iron-base alloys, body-centered-cubic, resistance to intergranular helium embrittlement, 135–137
Irradiated steels, welding, 79
Irradiation, effects on ferritic/martensitic steels, 81–82
Irradiation creep, 113–120
ferritic/martensitic steels, 114–120
measurement techniques, 114
rate, 113
steady-state rate, 116
theory, 113
Irradiation creep coefficient neutron-irradiated steels, 117
ODS and EM12 steels, 120
Irradiation creep deformation, 118–119
Irradiation damage, fusion neutron environment, 82–83
Irradiation effects, 208–210
Irradiation embrittlement helium effects, 156–162
see also Displacement damage effects
Irradiation experiments, 88–89
Irradiation fastening, 85–88
Irradiation resistance, enhanced, 149
Irradiation simulation techniques, 83–85
Irradiation studies, 83–85
Isothermal transformation diagram, 32–33

Joining, 71–79
braze welding, 78–79
dissimilar metal welding, 77–78
solid state welding, 77
welding of irradiated steels, 79

Knock-on atom, 81

Langer equation, 179–180
Laves phase, 40, 107–110
cleavage fracture toughness, 143
irradiation-induced, 143
phosphorus segregation, 43–44
precipitates, compositions, 39, 41
spheroidization, 53
time-temperature-precipitation diagrams, 39, 41–42
Life predictions, 199–201
Linear damage rule, 201
Linear damage summation, 200
Linear elastic fracture mechanics, 198
Liquid metal embrittlement, 59–60
Lithium, 18
Lithium-lead eutectic, corrosion, 58–60
Low activation, 3
Low-alloy ferritic/pearlitic steels, 158
Low-cycle fatigue
effect on temperature, 178–179
see also Strain-controlled low-cycle fatigue
Magnetic confinement systems, 15
MANET steels
activation property, 20–21
creep and temperature, 52
effect of hold periods on number of cycles to failure, 184
fatigue endurance, 67–68
fracture toughness, 173
fusion reactors, 15
hydrogen embrittlement, 65, 67–68
irradiated, Charpy curves, 139–140
irradiation hardening, 125–126
irradiation temperature effect, 139–140
stress corrosion cracking, 59–60
tempering curves, 35
Martensite microstructure, tempered, 160
Martensitic steels
advantages and limitations for fusion, 1–2
hydrogen diffusivity, 63–64
irradiated, microstructure, 98–99
low- and reduced-activation considerations, 2–3
low-swelling characteristic, 96

Optimization, 212–213
see also High chromium martensitic steels
Martensite hardness, 33
Mean stress, 185
Mechanical properties, thermal stability, 45–47
Melting practice, 212
effect on displacement damage, 148–149
Metallurgy, 28–37
constitution, 28–30
tempering, 33–37
transformation, 29–33
Microhardness, 73
gas tungsten arc welds, 73
Microstructural developments, 39, 41
Microstructural evolution, 40
Microstructure effects, 210–211
normalized-and-tempered steels, 141–142
Midlife weldment cracking, 75
Molybdenum as alloying element, 211
composition profile across prior austenite grain boundaries, 44
effect on grain boundary composition during tempering, 43
role in phosphorus segregation, 45
Monotonic stress-strain constants, 187
Monotonic stress-strain curves, 187–188

Neutron-energy spectra, fission reactors, 82–83
Neutron irradiation, 82–83, 209
effect on precipitate phase, 105
swelling during, see Swelling
Neutrons, 14 MeV
hardening by, 128–129
Next European Torus (NET), 15
Nickel effect on microstructure and properties, 84–85
helium effects, 96
on hardening, 129
irradiation embrittlement, helium effects and, 156–158
segregation, radiation-induced, 158
Nuclear fission, 11
Nuclear fusion, 14–15
r phase, cleavage fracture toughness, 143

Orowan type of equation, 45
Outboard blanket segment, 17–18
Out-of-phase thermomechanical fatigue tests, 196–197
Oxide dispersion-strengthened steels, 19, 213–215
Charpy curves, 155
displacement damage effects, 155–156
fast breeder reactors, 14
hardening by fission neutrons, 128
irradiated, microstructure, 98, 100
irradiation-creep coefficient, 120
swelling, 119–120
Permeation, hydrogen isotope effects, 63–64
Phase diagram, HAZ regions, 72

SUBJECT INDEX
Phosphorus composition profile across prior austenite grain boundaries, 44 segregation, 43
Plane-strain fracture toughness, 167 Plastic strain range, 188-189 development, 191
Post-weld heat treatment, 2, 71, 75-76 Precipitate phases, 104-111, 211, 213
Plastic strain range, 188-189 Plane-strain fracture toughness, 167
Reduced-activation steels, 3
Radiation damage, fast breeder reactors, 11-12
Radiation-induced segregation, 103-105 fracture toughness, 158
Ramberg-Osgood equation, 187
Reduction-activated steels, 3 activation property, 20-21 chemical composition effect, 149-150 chromium content and ductile-brittleness transition temperature, 151 composition, 21 displacement damage effects, 143 effect of tungsten and vanadium, 150 fracture toughness, 173-175 hydrogen embrittlement, 65, 67-68 impurity concentrations, 21 irradiation hardening by fission neutrons, 122-127 microstructure, 28-29 following irradiation, 93-94 neutron-irradiated, void swelling, 92-93 parameters, 21
Reheat cracking, 75
Ritchie-Knott-Rice model, 147 Rotors, high-chromium martensitic steels, 10-11
Ultraprecision power plants, 5-6 Upper-shelf energy, as function of displacement damage, 144-145 USE, 147
Vacancies, 82, 97-98 Valve bodies, 11 Vanadium
<table>
<thead>
<tr>
<th>Vanadium nitride, solubility curves, 35-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voids, 82</td>
</tr>
<tr>
<td>boron effect on size and density, 95-96</td>
</tr>
<tr>
<td>formation at prior austenite grain</td>
</tr>
<tr>
<td>boundaries, 185</td>
</tr>
<tr>
<td>Void swelling</td>
</tr>
<tr>
<td>electron- and ion-irradiated steels, 91</td>
</tr>
<tr>
<td>fast breeder reactors, 12-13</td>
</tr>
<tr>
<td>neutron-irradiated steels, 92-93</td>
</tr>
<tr>
<td>Water coolant, 56-58</td>
</tr>
<tr>
<td>steam oxidation, 58</td>
</tr>
<tr>
<td>Weight loss, versus exposure time, 59</td>
</tr>
<tr>
<td>Welding, 2</td>
</tr>
<tr>
<td>irradiated steels, 79</td>
</tr>
<tr>
<td>Yield stress, 122-123, 130-131</td>
</tr>
<tr>
<td>effect of fluence, 122-124</td>
</tr>
<tr>
<td>single- and dual-beam irradiation, 131-132</td>
</tr>
<tr>
<td>as function of fluence, 126, 129</td>
</tr>
<tr>
<td>irradiation temperature, 125</td>
</tr>
</tbody>
</table>