How To Use This Manual

Table I—lists the test methods with their equivalent IP, ISO, DIN, JIS, and AFNOR designations. The top of each page listing the test summary also refers to these equivalent standards. If you are considering using any standard that has equivalent standards you should refer to them to determine the full scope of each standard and any differences between. Although these standards are listed as equivalent they will not be exactly the same in many cases.

Table II—lists the ASTM test methods alphanumerically by ASTM designation. If you know the ASTM designation, this is the easiest way to find what you need. The top of each page listing the test summary also refers to these equivalent standards.

This manual originally published in 2000 has proved to be a useful reference book to technologists and others in the Petroleum Products and Lubricants industry. This enlarged second edition is updated to include ASTM D02 Committee test methods published through the end of 2006. The manual contains descriptions of a total of 585 test methods (an increase of 222 test methods from 363 methods in the first edition) describing a total of about 229 chemical and physical tests used to analyze petroleum products and lubricants (an increase of about 69 properties from about 160 properties described in the first edition).

The author and the publisher hope that this second edition will prove as useful as the first one to the oil industry researchers, analysts, and marketers.
CONTENTS

Introduction	1
Explanation of Terms	2
Table I—Test Method Equivalence	3
Table II—Alphanumeric Index of Standards	6

Analysis

<table>
<thead>
<tr>
<th>Acid Number</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>by color indicator titration—see also Base number, p. 37</td>
<td>D 974 17</td>
</tr>
<tr>
<td>by potentiometric titration</td>
<td>D 664 17</td>
</tr>
<tr>
<td>by semi-micro color indicator titration</td>
<td>D 3339 19</td>
</tr>
<tr>
<td>by semi-quantitative micro determination of acid number of lube oils during oxidation testing</td>
<td>D 5770 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acidity</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>in aviation turbine fuel</td>
<td>D 3242 20</td>
</tr>
<tr>
<td>of hydrocarbon liquids and their distillation residues</td>
<td>D 1093 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active Sulfur</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>in cutting oils</td>
<td>D 1662 21</td>
</tr>
<tr>
<td>in fuels and solvents (doctor test)</td>
<td>D 4952 21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adhesion of Solid Film Lubricants</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 2510 21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Release Properties of Oils</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3427 22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkyl Nitrate in Diesel Fuels</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 4046 22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AmYL Nitrate in Diesel Fuels</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1839 23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of LPG and Propane Concentrates by GC</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 2163 23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aniline and Mixed Aniline Point</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 611 24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apparent Viscosity – General</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3522 28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5186 28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 4420 29</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aromatics</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5580 30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5986 30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5769 31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5292 32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 2415 32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 482 33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 874 34</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 6560 34</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash</th>
<th>Reference ASTM Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 974 37</td>
<td></td>
</tr>
</tbody>
</table>
in lubricants by color indicator titration
by potentiometric perchloric acid titration
by potentiometric HCl titration

BENZENE/TOLUENE
in gasoline by gas chromatography
in gasoline by infrared (IR) spectroscopy
in finished gasoline by GC—see p. 30
in finished gasolines by gas chromatography-mass spectrometry (GC-MS)
—see p. 31
in engine fuels using mid-IR spectroscopy

AEROBIC, AQUATIC BIODEGRADABILITY OF LUBRICANTS IN A

 CLOSED RESPIROMETER
BLOCKING AND PICKING POINTS OF PETROLEUM WAX

BOILING RANGE DISTRIBUTION
of crude petroleum by gas chromatography
of gasoline by wide-bore capillary gas chromatography
by gas chromatography
of gasoline fractions by gas chromatography
of petroleum distillates by gas chromatography
of crude oils by high temperature gas chromatography

BORDERLINE PUMPING TEMPERATURE
of engine oils

BROMINE NUMBER
of distillates and aliphatic olefins
by electrometric titration

BURNING QUALITY OF KEROSENE

BUTYLENE ANALYSIS BY GC

CARBON, HYDROGEN, AND NITROGEN DETERMINATION—see p. 186

CARBON NUMBER DISTRIBUTION

CARBON RESIDUE
by micro method

CARBONIZABLE SUBSTANCES
in paraffin wax
in white mineral oil

CARBONYLS IN C4 HYDROCARBONS

CARBONYL SULFIDE IN PROPYLENE
by gas chromatography

CETANE NUMBER DERIVED, OF DIESEL FUEL OILS

CHLORINE
bomb method
field test kit method for chlorine in used petroleum products
organic chloride in crude oil
in lubricating oils and additives by wavelength dispersive x-ray fluorescence (WD-XRF)—see p. 176

CLOUD POINT
of petroleum products, manual
auto-optical detection stepped cooling method—see p. 55
auto-linear cooling rate method—see p. 55
auto-constant cooling rate method—see p. 55

COEFFICIENT OF FRICTION OF LUBRICANTS

OF LUBRICATING GREASE

COEFFICIENT OF KINETIC FRICTION FOR WAX COATINGS

COKING VALUE OF TAR AND PITCH
<table>
<thead>
<tr>
<th>Property</th>
<th>Method/Standard</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLD CRANKING SIMULATOR</td>
<td>D 2602</td>
<td>58</td>
</tr>
<tr>
<td>apparent viscosity using manual cold cranking simulator</td>
<td>D 5293</td>
<td></td>
</tr>
<tr>
<td>COLD CRANKING SIMULATOR</td>
<td>D 6371</td>
<td>59</td>
</tr>
<tr>
<td>of diesel and heating fuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR</td>
<td>D 1500</td>
<td>60</td>
</tr>
<tr>
<td>of dyed aviation gasoline</td>
<td>D 2392</td>
<td>62</td>
</tr>
<tr>
<td>Gardner color</td>
<td>D 1544</td>
<td>62</td>
</tr>
<tr>
<td>platinum-cobalt color</td>
<td>D 1209</td>
<td>62</td>
</tr>
<tr>
<td>Saybolt color</td>
<td>D 156</td>
<td>63</td>
</tr>
<tr>
<td>by automatic Tristimulus method</td>
<td>D 6045</td>
<td>63</td>
</tr>
<tr>
<td>CONE PENETRATION</td>
<td>D 217</td>
<td>64</td>
</tr>
<tr>
<td>of lubricating greases</td>
<td>D 1403</td>
<td>64</td>
</tr>
<tr>
<td>of petrolatum</td>
<td>D 937</td>
<td>65</td>
</tr>
<tr>
<td>CONGEALING POINT</td>
<td>D 938</td>
<td>65</td>
</tr>
<tr>
<td>of petroleum waxes and petrolatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONRADSON CARBON RESIDUE</td>
<td>D 189</td>
<td>66</td>
</tr>
<tr>
<td>of petroleum products</td>
<td>D 2416</td>
<td>68</td>
</tr>
<tr>
<td>of tar and pitch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING CHARACTERISTICS OF QUENCH OILS BY COOLING CURVE ANALYSIS</td>
<td>D 6200</td>
<td>69</td>
</tr>
<tr>
<td>COPPER IN JET FUELS BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY</td>
<td>D 6732</td>
<td>69</td>
</tr>
<tr>
<td>COPPER CORROSION</td>
<td>D 130</td>
<td>70</td>
</tr>
<tr>
<td>by copper strip tarnish</td>
<td>D 849</td>
<td>70</td>
</tr>
<tr>
<td>by liquefied petroleum gases</td>
<td>D 1838</td>
<td>71</td>
</tr>
<tr>
<td>from lubricating grease</td>
<td>D 4048</td>
<td>71</td>
</tr>
<tr>
<td>from petroleum products</td>
<td>D 7095</td>
<td>71</td>
</tr>
<tr>
<td>of solid film lubricants</td>
<td>D 2649</td>
<td>72</td>
</tr>
<tr>
<td>CORROSIVENESS OF DIESEL OILS AT 135°C</td>
<td>D 6594</td>
<td>72</td>
</tr>
<tr>
<td>CORROSION PREVENTIVE PROPERTIES</td>
<td>D 4636</td>
<td>73</td>
</tr>
<tr>
<td>corrosiveness and oxidation stability of oils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORROSIVENESS OF LUBRICATING FLUID</td>
<td>D 6547</td>
<td>74</td>
</tr>
<tr>
<td>of hydraulic oils</td>
<td>D 1743</td>
<td>74</td>
</tr>
<tr>
<td>of lubricating greases</td>
<td>D 5969</td>
<td>74</td>
</tr>
<tr>
<td>of lubricating greases (EMCOR test)</td>
<td>D 6138</td>
<td>75</td>
</tr>
<tr>
<td>CRYSTALLINE SIZE OF CALCINED PETROLEUM COKE</td>
<td>D 5187</td>
<td>75</td>
</tr>
<tr>
<td>by x-ray diffraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMULSIBILITY CHARACTERISTICS OF LUBRICATING OILS</td>
<td>D 2711</td>
<td>76</td>
</tr>
<tr>
<td>DENSITY, RELATIVE DENSITY, AND SPECIFIC GRAVITY – GENERAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real density of calcined petroleum coke</td>
<td>D 2638</td>
<td>76</td>
</tr>
<tr>
<td>vibrated bulk density of calcined petroleum coke</td>
<td>D 4292</td>
<td>77</td>
</tr>
<tr>
<td>real density of calcined petroleum coke</td>
<td>D 5004</td>
<td>77</td>
</tr>
<tr>
<td>gravity, specific</td>
<td>D 5002</td>
<td>78</td>
</tr>
<tr>
<td>by digital meters</td>
<td>D 4052</td>
<td>78</td>
</tr>
<tr>
<td>of light hydrocarbons by pressure thermohydrometer</td>
<td>D 1657</td>
<td>79</td>
</tr>
<tr>
<td>of liquids by Bingham pycnometer</td>
<td>D 1217</td>
<td>79</td>
</tr>
<tr>
<td>gravity, specific</td>
<td>D 1298</td>
<td>80</td>
</tr>
<tr>
<td>of solid pitch by pycnometer</td>
<td>D 2320</td>
<td>80</td>
</tr>
<tr>
<td>of solid pitch by pycnometer</td>
<td>D 4892</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Description</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>of solid pitch and asphalt</td>
<td>by Stabinger viscometer</td>
<td>D 71</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>by thermohydrometer method</td>
<td>D 7042</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>of viscous materials by Bingham pycnometer</td>
<td>D 6822</td>
<td>82</td>
</tr>
<tr>
<td>of viscous materials by Lipkin pycnometer</td>
<td>D 1480</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>DEPENTANIZATION</td>
<td>of gasoline and naphthas</td>
<td>D 1481</td>
<td>83</td>
</tr>
<tr>
<td>DIESEL FUEL DILUENT</td>
<td>in used diesel engine oils by gas chromatography</td>
<td>D 2001</td>
<td>84</td>
</tr>
<tr>
<td>DISTILLATION – GENERAL</td>
<td>of crude petroleum</td>
<td>D 3524</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>of heavy hydrocarbon mixtures</td>
<td>D 2764</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>of petroleum products</td>
<td>D 5236</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>at reduced pressure</td>
<td>D 86</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>of pitch</td>
<td>D 1160</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 2569</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 2892</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 566</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 2265</td>
<td>90</td>
</tr>
<tr>
<td>DUST CONTROL MATERIAL</td>
<td>on calcined petroleum coke</td>
<td>D 4952</td>
<td>90</td>
</tr>
<tr>
<td>ELASTOMER COMPATIBILITY</td>
<td>of lubricating greases and fluids</td>
<td>D 2001</td>
<td>84</td>
</tr>
<tr>
<td>ELECTRICAL CONDUCTIVITY</td>
<td>of Aviation and Distillate fuels</td>
<td>D 2068</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>of liquid hydrocarbons by precision meter</td>
<td>D 4930</td>
<td>90</td>
</tr>
<tr>
<td>ENGINE OIL VOLATILITY</td>
<td>by capillary gas chromatography</td>
<td>D 2892</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>by Noack evaporation—see p. 96</td>
<td>D 5236</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>by TGA—see p. 97</td>
<td>D 86</td>
<td>86</td>
</tr>
<tr>
<td>ETHANOL CONTENT</td>
<td>in denatured fuel ethanol by GC</td>
<td>D 2265</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>of lubricating greases and oils</td>
<td>D 3524</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>of lubricating greases and oils</td>
<td>D 2782</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>of lubricating fluids</td>
<td>D 2783</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 2783</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Noack evaporation loss</td>
<td>D 2596</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>by thermogravimetric analysis (TGA) noack method</td>
<td>D 5706</td>
<td>100</td>
</tr>
<tr>
<td>EVAPORATION LOSSES BY VOLATILITY – GENERAL</td>
<td>by GC</td>
<td>D 7217</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>of lubricating greases</td>
<td>D 5480</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>of lubricating greases and oils</td>
<td>D 2595</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Noack evaporation loss</td>
<td>D 972</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>by thermogravimetric analysis (TGA) noack method</td>
<td>D 5800</td>
<td>96</td>
</tr>
<tr>
<td>EXPLOSIVE REACTIVITY OF LUBRICANTS</td>
<td>of lubricating greases</td>
<td>D 6375</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>of lubricating greases</td>
<td>D 3115</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>of lubricating grease</td>
<td>D 3235</td>
<td>101</td>
</tr>
<tr>
<td>EXTREME PRESSURE PROPERTIES</td>
<td>solvent extractables in petroleum waxes</td>
<td>D 3235</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>filter plugging tendency</td>
<td>D 2068</td>
<td>102</td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>FILTERABILITY OF AVIATION TURBINE FUEL</td>
<td>D 6824</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>FILTERABILITY OF DIESEL FUELS</td>
<td>D 4539</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>FILTERABILITY OF DISTILLATE FUEL OILS</td>
<td>D 6426</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>FILTERABILITY OF ENGINE OILS AFTER TREATMENT WITH WATER</td>
<td>D 6794</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>FILTERABILITY OF ENGINE OILS AFTER TREATMENT WITH WATER</td>
<td>D 6795</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>AND DRY ICE</td>
<td>D 6668</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>FUEL INJECTOR SHEAR STABILITY TEST (FISST)</td>
<td>D 5275</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>FLASH POINT – GENERAL</td>
<td></td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>by continuously closed cup tester (CCFP)</td>
<td>D 6450</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>by cleveland open cup (COC)</td>
<td>D 92</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>by MCCFP tester</td>
<td>D 7094</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>by small scale closed cup tester (ramp method)</td>
<td>D 7236</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>by Pensky-Martens closed tester (PMCC)</td>
<td>D 93</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>small scale closed tester</td>
<td>D 3828</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Tag closed tester</td>
<td>D 56</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>FLOCCULATION RATIO AND PEPTIZING POWER IN RESIDUAL AND HEAVY FUEL OILS</td>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>FOAMING TENDENCY</td>
<td></td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>in aqueous media</td>
<td>D 3519</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>in aqueous media</td>
<td>D 3601</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>of lubricating oils</td>
<td>D 892</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>high temperature foaming tendency</td>
<td>D 6082</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>FREEZING POINT</td>
<td></td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>of aviation fuels</td>
<td>D 2386</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>of aviation fuels (automatic fiber optical method)</td>
<td>D 7154</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>by automatic laser method</td>
<td>D 7153</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>by automatic optical method</td>
<td>D 5901</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>by automatic phase titration method</td>
<td>D 5972</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>of high purity hydrocarbons</td>
<td>D 1015</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>FRETTING WEAR PROTECTION</td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>by lubricating greases</td>
<td>D 4170</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>FRICTION AND WEAR PROPERTIES</td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>of extreme pressure lubricating oils</td>
<td>D 6425</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>FUEL SYSTEM ICING INHIBITORS IN AVIATION FUELS</td>
<td>D 5006</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>GAGE VAPOR PRESSURE OF LPG</td>
<td>D 1267</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>GASOLINE DILUENT IN USED ENGINE OILS</td>
<td></td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>distillation method</td>
<td>D 322</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>gas chromatography method</td>
<td>D 3525</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>GLYCERIN IN BIODIESEL METHYL ESTERS BY GC</td>
<td>D 6584</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>GLYCOL ANTIFREEZE IN USED LUBRICATING OILS</td>
<td>D 2982</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>GRAIN STABILITY OF CALCINED PETROLEUM COKE</td>
<td>D 6791</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>GRAVITY, API BY HYDROMETER METHOD</td>
<td>D 287</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>EXISTENT GUM IN FUELS BY JET EVAPORATION</td>
<td>D 381</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>HARDGROVE GRINDABILITY INDEX OF PETROLEUM COKE</td>
<td>D 5003</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>HEAT OF COMBUSTION OF PETROLEUM PRODUCTS</td>
<td></td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>net heat of combustion of aviation fuels</td>
<td>D 1405</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>of aviation fuels</td>
<td>D 3338</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>of aviation fuels</td>
<td>D 4529</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>of aviation fuels</td>
<td>D 6446</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>net and gross heat of combustion of burner and diesel fuels</td>
<td>D 4868</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>heating values of liquids and solids by differential mackey test</td>
<td>D 3523</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>of liquid hydrocarbon fuels by bomb calorimeter</td>
<td>D 240</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>
of liquid hydrocarbon fuels by bomb calorimeter | D 4809 | 124
liquid heat capacity of petroleum distillate fuels | D 2890 | 125
specific heat of aircraft turbine fuels by thermal analysis | D 4816 | 125

SEPARABILITY NUMBER OF HEAVY FUEL OILS
by optical scanning device | D 7061 | 126
HIGH TEMPERATURE DEPOSITS BY TEOST | D 6335 | 126
HIGH TEMPERATURE STABILITY
of distillate fuels | D 6468 | 127
HIGH TEMPERATURE UNIVERSAL OXIDATION TEST FOR TURBINE OILS | D 6514 | 127

HINDERED PHENOLIC AND AROMATIC AMINE ANTIOXIDANT CONTENT IN NON-ZINC TURBINE OILS
by linear sweep voltammetry | D 6971 | 128

HINDERED PHENOLIC ANTIOXIDANT IN HL TURBINE OILS
by linear sweep voltammetry | D 6810 | 129

HOMOGENITY AND MISCIBILITY
of engine oils | D 6922 | 129

HYDROCARBON TYPES – GENERAL
characteristic groups in oils by clay-gel absorption chromatography | D 2007 | 130
aromatics and nonaromatics fractions of high boiling oils by emulsion chromatography | D 2549 | 131
by fluorescent indicator adsorption | D 1319 | 131
in gasoline by gas chromatography | D 2427 | 132
in ethylene by gas chromatography | D 2505 | 133

HYDROCARBON TYPES IN ENGINE FUELS
by gas chromatography | D 6839 | 134
by mass spectrometry | D 2786 | 134
aromatics types by mass spectrometry | D 3239 | 135
aromatic hydrocarbon types in aviation fuels and petroleum distillates | D 6379 | 136

AROMATIC HYDROCARBON TYPES IN MIDDLE DISTILLATES
by HPLC with RI detection | D 6591 | 137
by mass spectrometry | D 2425 | 138
in gasoline by mass spectrometry | D 2789 | 139
by multidimensional GC | D 5443 | 139

HYDROGEN CONTENT OF FUELS – GENERAL
of aviation fuels | D 3343 | 140
of aviation turbine fuels by low resolution nuclear magnetic resonance (NMR) | D 3701 | 141
of petroleum products by low resolution NMR | D 4808 | 141
by NMR | D 7171 | 141
of petroleum fractions | D 1018 | 142
of carbon, hydrogen, and nitrogen—see p. 186 | D 5291 | 143

HYDROLYTIC STABILITY | D 2619 | 142

HYDROGEN SULFIDE
in liquefied petroleum gas (LPG) by lead acetate method | D 2420 | 143
in residual fuels | D 6021 | 143
in residual fuel oils | D 5705 | 144

HYDROPEROXIDE NUMBER
of aviation turbine fuels | D 6447 | 144

HYDROXYL NUMBER | D 1957 | 145

INDIVIDUAL COMPONENTS IN ENGINE FUELS
by high resolution gas chromatography | D 6729 | 145
by high resolution gas chromatography | D 6730 | 146
by high resolution gas chromatography | D 6733 | 148
INSOLUBLES IN HYDRAULIC FLUIDS
D 4898 148
PENTANE INSOLUBLES
by membrane filtration
D 4055 149
INSOLUBLES IN HYDRAULIC FLUIDS
in used lubricating oils
D 893 149
in used oils
D 7317 150
IODINE NUMBER
D 2078 150
IRON CHIP CORROSION
for water dilutable metal working fluids
D 4627 151
LEAD DETERMINATION IN GASOLINE – GENERAL
by atomic absorption spectrometry (AAS)
D 3237 151
in gasoline by iodine chloride (ici) method
D 3341 152
in gasoline by x-ray fluorescence (XRS)
D 5059 152
for trace lead in gasoline
D 3348 153
LEAKAGE TENDENCIES
of automotive greases
D 1263 153
LEAKAGE TENDENCIES OF GREASES
D 4290 153
LIFE PERFORMANCE OF GREASES
D 3527 154
LINEAR FLAME PROPAGATION RATE
of lube oils and hydraulic fluids
D 5306 154
LITHIUM AND SODIUM
in greases by flame photometer
D 3340 155
LOAD-CARRYING CAPACITY OF GREASES
D 2509 155
LOW TEMPERATURE FLUIDITY AND APPEARANCE
of hydraulic fluids
D 6351 156
LUBRICATING GREASES ANALYSIS
D 128 156
LUBRICITY OF AVIATION TURBINE FUELS
D 5001 156
LUBRICITY OF DIESEL FUELS
by high-frequency reciprocating rig (HFRR)
D 6079 157
LUMINOMETER NUMBERS
of aviation turbine fuels
D 1740 157
MANGANESE IN GASOLINE BY AAS
D 3831 158
MELTING POINT OF PETROLEUM WAX
D 87 158
DROP MELTING POINT OF PETROLEUM WAX
D 127 159
MERCAPTAN SULFUR
in petroleum products
D 3227 159
MISTING PROPERTIES OF LUBRICATING FLUIDS
MELTING POINT OF PETROLEUM WAX
D 127 159
MERCAPTAN SULFUR
in petroleum products
D 3227 159
MISTING PROPERTIES OF LUBRICATING FLUIDS
D 3705 160
METAL ANALYSIS BY SPECTROSCOPY – GENERAL
D 3605 160
TRACE METALS IN GAS TURBINE FUELS BY AA/FES
in lubricating oils by AAS
D 4628 161
aluminum and silicon in fuel oils by inductively coupled plasma (ICPAES) and
AAS
D 5184 162
TRACE ELEMENTS IN MIDDLE DISTILLATE FUELS
by ICP-AES
D 7111 163
in oils and fuels by flame AAS
D 5863 165
ICP-AES, standard practice for operation
D 7260 165
CONTAMINANTS IN GAS TURBINE AND DIESEL ENGINE FUELS BY
ROTRODE
D 6728 165
INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROMETRY
D 4951 167
inductively coupled plasma atomic emission spectrometry
D 5185 168
metals in grease
D 7303 169
in crude oils and fuels by ICP-AES
D 5708 170
PHOSPHORUS IN ILSAC GF4 ENGINE OILS
 by ICP-AES D 7040 171
 in petroleum coke by AAS D 5056 172
 in petroleum coke by ICPAES D 5600 173
 in petroleum coke by wavelength dispersive x-ray spectroscopy D 6376 173

WEAR METALS AND CONTAMINANTS
 in used oils/hydraulic fluids using rotrode emission spectrometry D 6595 174
 x-ray fluorescence spectrometry D 4927 175
 in lubricating oils and additives by wavelength dispersive x-ray fluorescence
 (WD-XRF) D 6443 176

METALS IN LUBRICATING OILS
 by energy dispersive x-ray fluorescence spectroscopy D 6481 177

METHANOL IN CRUDE OILS
 by multi-dimensional gas chromatography D 7059 178

TRACE METHANOL IN PROPYLENE CONCENTRATES
 by gas chromatography D 4864 178

MOLECULAR WEIGHT
 of lubricating oils D 2878 179
 of hydrocarbons D 2503 179
 of petroleum oils D 2502 180

MOISTURE CORROSION RESISTANCE
 of automotive gear lubricants D 7038 180

MOISTURE OF GREEN PETROLEUM COKE D 4931 181

METHYL TERT-BUTYL ETHER
 by gas chromatography D 5441 181
 in gasoline by GC D 4815 182

OXYGENATES
 in gasoline by gas chromatography—see p. 198 D 5599 183
 in finished gasoline by GC-FTIR—see p. 30 D 5986 183
 in gasoline by infrared spectroscopy D 5845 183

NAPTHALENE HYDROCARBONS
 in aviation turbine fuels by ultraviolet (UV) spectrophotometry D 1840 183

NEEDLE PENETRATION OF PETROLEUM WAXES
 trace nitrogen by oxidative combustion and chemiluminescence detection
 by boat-inlet chemiluminescence D 4629 184
 of carbon, hydrogen, and nitrogen D 5762 185
 Kjeldahl method D 3228 186

ODOR OF PETROLEUM WAX D 1833 187

AUTOMOTIVE ENGINE OIL COMPATABILITY
 with typical seal elastomers D 7216 187

OIL CONTENT OF PETROLEUM WAXES D 721 188

OIL SEPARATION FROM GREASE
 by centrifuging (Koppers method) D 4425 188

OIL SEPARATION FROM GREASE (CONICAL SIEVE METHOD) D 6184 189
 o-PONA hydrocarbons in fuels by GC—see p. 199 D 6293

OLEFINS IN ENGINE FUELS
 by GC D 6296 189

OLEFINS IN GASOLINES
 by supercritical fluid chromatography D 6550 190
 by fluorescent indicator adsorption—see p. 131 D 1319

OXIDATION INDUCTION TIME OF GREASES D 5483 191

OXIDATION INDUCTION TIME OF LUBE OILS
 by pressure differential scanning calorimetry (PDSC) D 6186 191
OXIDATION OF USED LUBRICANTS
by FT-IR using peak area increase calculation D 7214 192

OXIDATION STABILITY
of aviation fuels D 873 192
of distillate fuels D 2274 193
of oils by thin film oxygen uptake (TFOUT) D 4742 193
of extreme pressure lubricating oils D 2893 194
of gasoline D 525 195
of gear oils D 5763 195
of inhibited mineral oils D 943 196
of lubricating greases D 942 196
of oils by universal oxidation test D 5846 197

OXIDATION STABILITY OF STEAM TURBINE OILS
by rotating pressure vessel D 2272 197

OXYGEN IN GASOLINE AND FUELS
by reductive pyrolysis D 5622 198
in gasoline by GC—see p. 182 D 4815
in gasoline by gas chromatography D 5599 198
in finished gasoline by GC-FTIR—see p. 30 D 5986
o-PONA hydrocarbons in fuels by GC D 6293 199

PARTICULATE CONTAMINATION
in aviation fuels D 5452 200
in aviation fuel D 2276 200
in middle distillate fuels D 6217 201

PEROXIDES IN BUTADIENE
D 5799 201

POLYCHLORINATED BIPHENYLS (PCBs) IN WASTES
by gas chromatography D 6160 202

PEROXIDE NUMBER
of aviation turbine fuels D 3703 202
of petroleum wax D 1832 203

PETROLEUM WAX ANALYSIS
by GC D 5442 203

PHOSPHORUS DETERMINATION IN PETROLEUM PRODUCTS

PHOSPHORUS DETERMINATION
in gasoline D 3231 204
by ICP-AES in GF4 oils—see p. 171 D 7040
in lubricating oils D 1091 205
in lubricating oils D 4047 207

PISTON DEPOSITS
by TEOST MHT D 7097 207

POUR POINT OF CRUDE OILS D 5853 208

POUR POINT, MANUAL D 97 210

POUR POINT
by using automatic air pressure method D 6749 210
auto pour point (phase technology) D 5949 211
auto pour point (ISL) D 5950 211
auto robotic tilt method D 6892 212
auto pour point (Herzog) D 5985 212

PRECIPITATION NUMBER OF LUBRICATING OILS D 91 213

PUMPABILITY OF INDUSTRIAL FUEL OILS D 3245 213

QUENCHING TIME OF HEAT TREATING FLUIDS D 3520 213

QUINOLINE INSOLUBLE CONTENT
of tar and pitch D 2318 214
QUINOLINE INSOLUBLE IN TAR AND PITCH
 by pressure filtration
 D 4746
RAMSBOTTOM CARBON RESIDUE
 D 524
RED DYE CONCENTRATION AND ESTIMATION OF ASTM COLOR
 D 6756
RED DYE CONCENTRATION AND ESTIMATION OF SAYBOLT COLOR
 D 7058
REFRACTIVE INDEX
 of hydrocarbon liquids
 D 1218
 of viscous materials
 D 1747
RESIDUES IN LIQUEFIED PETROLEUM GASES
 D 2158
ROLL STABILITY OF LUBRICATING GREASES
 D 1831
RUST PREVENTIVE CHARACTERISTICS
 of engine oils
 D 6557
 of mineral oils
 D 665
 of steam turbine oil
 D 3603
SALTS IN CRUDE OIL
 D 3230
SALT IN CRUDE OILS
 D 6470
SAPONIFICATION NUMBER
 D 94
SEDIMENT TESTS
 sediment in crude and fuel oils
 D 473
 in crude oil
 D 4807
 in trace sediment in lubricating oils
 D 2273
 in crude oil
 D 4870
 water and sediment in crude oil
 D 96
 water and sediment in middle distillate fuels
 D 2709
LUBRICITY OF DIESEL FUELS BY SLBOCLE
 D 6078
SONIC SHEAR STABILITY
 shear stability index
 D 3945
 of polymer-containing fluids
 D 6278
 of hydraulic fluid
 D 5621
 of polymer-containing oils
 D 2603
SHEAR STABILITY OF POLYMER CONTAINING FLUIDS USING A
EUROPEAN DIESEL INJECTOR APPARATUS
 D 7109
SLUDGING AND CORROSION TENDENCIES
 of inhibited mineral oils
 D 4310
SMOKE POINT
 of kerosene and aviation turbine fuel
 D 1322
SOFTENING POINT OF ASPHALT AND PITCH – GENERAL
 mettler cup-and-ball method
 D 3461
 cube-in-water method
 D 61
 cube-in-air method
 D 2319
 mettler softening point method
 D 3104
SOLIDIFICATION POINT OF PETROLEUM WAX
 D 3944
SOLVENT RED DYE 164 IN DIESEL FUELS
 D 6258
STABILITY AND COMPATIBILITY OF HEAVY FUEL OILS AND CRUDE
OILS BY OIL STABILITY ANALYZER (OPTICAL DETECTION)
STABILITY, STORAGE
 distillate fuel storage stability at 43°C
 D 4625
 distillate fuel storage stability
 D 5304
INTRINSIC STABILITY OF ASPHALTENE CONTAINING OILS
 D 7157
 stability of residual fuels by spot test
 D 4740
 storage stability of water-in-oil emulsions
 D 3707
 stability of water-in-oil emulsions
 D 3709
 sulfate, inorganic in ethanol by potentiometric titration
 D 7318
SULFATE & CHLORIDE, INORGANIC IN ETHANOL BY DIIC
D 7319 237
sulfate & chloride in ethanol by AIIC
D 7328 238
SULFATED ASH FROM LUBRICATING OILS AND ADDITIVES—see p. 34
D 874
SULFONATES BY LIQUID CHROMATOGRAPHY
D 3712 238
SULFUR DETERMINATION IN PETROLEUM PRODUCTS—GENERAL
D 1662 239
in cutting oils—see p. 21
in fuels and solvents (Doctor test)—see p. 21
sulfur determination by bomb method
D 129 239
by high temperature method
D 1552 242
by hydrolysis and rateometric colorimetry
D 4045 243
by lamp method
D 1266 243
in liquid petroleum gases (LPG)
D 2784 244
in petroleum products—see p. 159
D 3227
by monochromatic WDXRF
D 7039 244
by on-line GC with FPD
D 7041 245
by oxidative combustion and electrochemical detection
D 6428 245
by oxidative combustion with electrochemical detection
D 6920 246
by EDXRF using a low background proportional counter
D 7212 246
in fuels by polarization XRF
D 7220 247
by oxidative microcoulometry
D 3120 247
by oxidative microcoulometery
D 3246 248
by GC-sulfur detector
D 5623 248
by ultraviolet fluorescence method
D 5453 249
TOTAL VOLATILE SULFUR
in gaseous hydrocarbons and LPG using combustion UV fluorescence detection
D 6667 250
sulfur by wavelength dispersive x-ray fluorescence (WD-XRF)
D 2622 250
by energy dispersive x-ray fluorescence (ED-XRF)
D 4294 251
in gasoline by energy-dispersive x-ray fluorescence spectrometry
D 6445 252
in gasoline by WD-XRF
D 6334 252
by TFOUT catalyst B
D 7098 253
SURFACE WAX COATING ON CORRUGATED BOARD
D 3521 253
SURFACE WAX ON WAXED PAPER OR PAPERBOARD
D 2423 254
THERMAL CONDUCTIVITY OF LIQUIDS
D 2717 254
THERMAL STABILITY
of aviation turbine fuels by JFTOT procedure
D 3241 255
of aviation turbine fuels by HIRETS method
D 6811 255
THERMAL STABILITY
of organic heat transfer fluids
D 6743 256
of hydraulic oils
D 2070 257
INSTABILITY
of middle distillate fuels by portable spectrophotometer
D 6748 257
of solid film lubricants
D 2511 258
of way lubricants
D 6203 258
TOLUENE INSOLUBLES IN TAR AND PITCH
D 4072 259
TOLUENE INSOLUBLES IN TAR AND PITCH
D 4312 259
TORQUE, LOW TEMPERATURE
of ball bearing grease
D 1478 259
of grease lubricated wheel bearings
D 4693 259
TOTAL INHIBITOR CONTENT
of light hydrocarbons
D 1157 260
TRANSITION TEMPERATURES OF PETROLEUM WAXES BY DSC
D 4419 260
ULTRAVIOLET (UV) ABSORBANCE OF PETROLEUM PRODUCTS
D 2008 261
UNSULFONATED RESIDUE
 of oils D 483 262
VANADIUM IN HEAVY FUEL OIL D 1548 262
VAPOR LIQUID RATIO
 of fuels D 2533 262
temperature of fuels D 5188 263
VAPOR PRESSURE
 of crude oil D 6377 263
 of gasoline and blends D 4953 264
 of LPG (expansion method) D 6897 264
 of lubricating oils—see p. 179 D 2878
 of petroleum products by automatic method D 5190 265
 of petroleum products by mini-automatic method D 5191 265
 of petroleum products by mini-atmospheric method D 5482 266
 REID vapor pressure of petroleum products D 323 266
 of petroleum products by triple expansion method D 6378 267
VISCOSITY, APPARENT
 apparent viscosity by capillary viscometer at high temperature high shear—see p. 25 D 4624
 using cold cranking simulator—see p. 26 D 5293
 of hot melt adhesives D 3236 267
 at high temperature high shear by multicell capillary viscometer—see p. 26 D 5481
 of lubricating greases—see p. 27 D 1092
 of petroleum waxes D 2669 268
YIELD STRESS AND APPARENT VISCOSITY
 of used engine oils at low temperature D 6896 269
 yield stress and apparent viscosity at low temperature—see p. 27 D 4684
LOW TEMPERATURE VISCOSITY OF
 drive line lubricants in a constant shear stress viscometer—see p. 275 D 6821
VISCOSITY
 Brookfield viscosity D 2983 269
 scanning Brookfield viscosity D 5133 270
 Houillon D 7279 271
 at high temperature high shear—see p. 25 D 4683
 at high shear rate by tapered bearing simulator viscometer at 100°C D 6616 271
 at high shear rate by tapered plug-simulator—see p. 26 D 4741
VISCOSITY INDEX, CALCULATIONS D 2270 272
VISCOSITY, KINEMATIC
 of aircraft turbine lubricants D 2532 273
 of transparent and opaque liquids D 445 273
VISCOSITY, MINI-ROTARY
 of volatile and reactive liquids D 4486 274
 of engine oils—see p. 47 D 3829
VISCOSITY, SAYBOLT D 88 275
 of drive line lubricants in a constant shear stress viscometer D 6821 275
ROTATIONAL VISCOSITY OF HEAVY DUTY
 diesel drain oils at 100°C D 6895 276
VISCOSITY, SAYBOLT
 universal viscosity D 2161 276
VISCOSITY, SHEAR D 5018 277
 of coal-tar and petroleum pitches
DYNAMIC VISCOSITY AND DENSITY BY STABINGER VISCOMETER D 7042
 —see p. 81
VISCOSITY-TEMPERATURE RELATIONSHIP OF USED AND SOOT CONTAINING ENGINE OILS D 7110 277

VOLATILES
- contaminants in used engine oils D 3607 278
- in gaseous hydrocarbons and lpg using combustion UV fluorescence detection—see p. 250
- matter in green petroleum coke D 6374 278
- matter in petroleum coke D 4421 279
- pitch volatility D 4893 279

VOLATILITY
- of LPG D 1837 279

WATER – GENERAL
- in crude oils by coulometric KF titration D 4928 282
- in crude oil by distillation D 4006 282
- in crude oils by potentiometric KF titration D 4377 283

FREE WATER, PARTICULATES, AND CONTAMINANTS
- in aviation fuels D 6986 283
- in distillate fuels D 4176 284
- in mid-distillate fuels D 4860 285
- in petroleum products and lubricants by coulometric Karl Fischer titration D 6304 285
- in petroleum products by distillation method D 95 286
- by Karl Fischer reagent D 1744 286
- reaction of aviation fuels D 1094 286
- resistance of lubricating grease D 4049 287
- and sediment in crude oil—see p. 225 D 96 287
- and sediment in fuel oils D 1796 287
- and sediment in crude oil D 4007 288
- water separation of diesel fuels D 7261 288
- and sediment in middle distillate fuels—see p. 225 D 2709 289
- separation characteristics of aviation turbine fuels D 3948 289
- separability of petroleum oils D 1401 290
- water separation characteristics of kerosene-type
- by portable separometer D 7224 291
- solubility in hydrocarbons and aliphatic ester lubricants D 4056 292
- in solvents by Karl Fischer titration D 1364 292
- tolerance of gasoline-alcohol blends D 6422 293
- undissolved in aviation turbine fuels D 3240 293
- washout characteristics of lubricating greases D 1264 294

WAX APPEARANCE POINT
- of distillate fuels D 3117 294

WAX APPLIED DURING
- curtain coating operation D 3708 294

WAX CONTENT OF CORRUGATED PAPERBOARD D 3344 295

WEAR CHARACTERISTICS OF PETROLEUM
- hydraulic fluids D 6973 295

WEAR CHARACTERISTICS
- of non-petroleum and petroleum hydraulic fluids D 7043 296
- of lubricating fluid (four ball method) D 4172 296
- preventing properties of lubricating greases D 3704 297
- of lubricating grease (four ball method) D 2266 297
- of hydraulic fluids D 2882 298

WEAR LIFE
- of solid film lubricants D 2981 298
- of tractor hydraulic fluids D 4998 299