THE ROLE OF SENSORY ANALYSIS IN QUALITY CONTROL

JUNE E. YANTIS
EDITOR

ASTM
Foreword

This publication on the sensory evaluation function within manufacturing quality assurance/quality control (QA/QC) programs was sponsored by ASTM Subcommittee E18.07, a subcommittee on Quality Assurance. of ASTM Committee E-18 on Sensory Evaluation of Materials and Products. The scope of the subcommittee was to identify and recommend procedures for using sensory analysis in QA/QC functions.

Many people have contributed ideas for this manual from their actual work experience. Sensory programs vary with the diversity of products, size, and needs of individual plants and companies. Because there are few "standard procedures" for sensory testing in QC programs, the information presented in this document is intended to be used as reference material for developing sensory test programs appropriate to the ideas and needs of individual QC groups. Supplemental references related to QA procedures and sensory methods are listed in the bibliography.

Acknowledgments

Special thanks go the editorial contributions of Dick Jones, John Powers, and Morten Meilgaard. Many members of ASTM Committee E-18 contributed ideas and examples, many of which were used in this publication. Contributors over the years of developing this guide include Marjorie Albright, Joan Stouffer, Barbara Booth, Gail Civille, Margery Einstein, Vivienne Drimmer, Suzanne Whitlock, Gregg Wilcove, Carol Gardze, Darla Simpson Hall, Jeanne Speight, Sally Hite, and Mark Land.
Related ASTM Publications

Manual of Sensory Testing Methods, STP 434 (1968), 04–434000–36
ASTM Manual on Presentation of Data and Control Chart Analysis, MNL 7 (1990), 28–007089–34
Contents

Preface vii

Chapter 1—Introduction/Program Objectives for Plant Sensory Function in QA/QC Programs 1

Chapter 2—Background Information for Setting Up New Plant Sensory Programs 4

Chapter 3—Resource Assessment 10

Chapter 4—Program Implementation 14

Chapter 5—Data Presentation for QC Programs 16

Chapter 6—The Basis of Sensory Data for QC: Sensory Specifications 25

Chapter 7—Methods 28

Chapter 8—Sampling 46

Summary 49

References 50

Index 51
Preface

This manual on The Role of Sensory Analysis in Quality Control describes general procedures and gives background information regarding the use of sensory testing as part of a quality control function in a manufacturing plant. Chapters 2 through 4 are intended to help those readers who are new to the sensory field, with a need for background material on establishing sensory testing in a plant. Those experienced with plant quality control may wish to go directly to Chapter 5 for sensory testing applications.

TERMINOLOGY AND DEFINITIONS USED IN THIS PUBLICATION

1. Quality Assurance—All those planned or systematic actions necessary to provide adequate confidence that a product or a service will satisfy given needs [1].

Discussion

- As a function of corporate management, quality assurance sets the policies, systems, programs, and procedures to be carried out by quality control.
- Quality assurance defines the function of quality control and its programs and procedures.
- Historically, quality control has permitted certain percent defectives. QA aims at achieving lower defect levels.

2. Quality Control—The operational techniques and the activities that sustain quality of product or a service that will satisfy given needs; also the use of such techniques and activities [2].

Discussion

- Quality control, as a function closely aligned to the manufacturing process, implements the quality specifications for raw materials, intermediate products and finished products as established by quality assurance.

3. Sensory Evaluation—The analysis of a substance(s) through the use of any or all of the senses [3]. A scientific discipline used to evoke, measure, analyze, and interpret reactions to those characteristics of foods and materials as they are perceived by the senses of sight, smell, taste, touch, and hearing.

Discussion

- Sensory evaluation measures perceived product characteristics, using one or more people as measuring devices.
REFERENCES
