Index

A
- Air contamination, 8
- Air temperature, 8
- Aluminum, 7, 9, 62
 - atmospheric corrosivity evaluation, 56
 - correlation and regression, 61
 - corrosion losses of, 29–33, 38–40
 - corrosivity classification, 52–53
 - flat panels, corrosion losses of, 29–30
 - helices, corrosion losses of, 31–32
 - observed vs. predicted values for, 63
 - predicted loss vs. measured loss, 64
- American National Standards Institute (ANSI), 66
- Argentina
 - atmospheric corrosion test sites, 3
 - Exposure Program initiation dates, 8
 - organizations participating in ISOCORRAG Program, 5
- ASTM G01, 2, 6
- ASTM G50, 2
- ASTM G91, 2
- ASTM G140, 2
- Atmospheric corrosion rates, 57–59
 - test sites, 3–4
- Atmospheric corrosivity, classification of, 1, 66
- Average values, of metal corrosion, 60

B
- B (time exponent), 63
- BRANZ (Building Research Association of New Zealand Building Science Group), 6
- British Steel Corporation, 2
- British Steel Swinden Laboratories, 6
- Building Research Association of New Zealand Building Science Group (BRANZ), 6
- Bundesanstalt fur Strassenwesen, 5

C
- Canada
 - atmospheric corrosion test sites, 3
 - Exposure Program initiation dates, 8
 - organizations participating in ISOCORRAG Program, 5
- Carbon steel
 - atmospheric corrosivity evaluation, 56
 - correlation and regression, 61
 - corrosive rates, 65
 - observed vs. predicted values for, 63
 - residual and standard error of prediction for, 62
 - unalloyed, 7
- Category derivation, 59–62
- Central Electricity Research Laboratories, 6
- Centre Technique du Zinc, 5
- Centro National de Investigaciones Metalurgicas, 6
- Chemical cleaning solutions, 9
- CITEFA (Instituto de Investigaciones Cientificas y Tecnicas de las Fuerzas Armadas), 5
- Cl deposition, 63
- Contamination, 8
- Copper, 7, 9
 - atmospheric corrosivity evaluation, 56
 - correlation and regression, 61
 - corrosion losses of, 25–29, 37–38
 - corrosive rates, 65
 - corrosivity classification, 50–51
 - flat panels, corrosion losses of, 25–26
 - helices, corrosion losses of, 26–27
 - observed vs. predicted values, 63
 - predicted loss vs. measured loss, 64
 - residual and standard error of prediction for, 62
- Correlation, 61
- Corrosion losses
 - aluminum, 29–33, 38–40
 - copper, 25–29, 37–38
 - flat panels, test sites categories, 42–44
 - helices, test sites categories, 44–45
 - steel, 15–20, 34–35
 - zinc, 20–24, 35–37
- Corrosion rates, 2, 65
 - atmospheric, 57–59
 - environmental effects of 1 year, 59
- Corrosivity categories
 - derivation, 59–62
 - for metals in ISOCORRAG Program, 54–55
- Corrosivity classification, 40–56
- Czechoslovakia
 - atmospheric corrosion test sites, 3
 - Exposure Program initiation dates, 8
 - organizations participating in ISOCORRAG Program, 5

D
- Data analysis, 15–40
- Database characteristics, 57
- Department of Materials Science VHE 602, University of Southern California, 6
- Dose-response functions for normative corrosivity category derivation, 59–62

E
- Environmental categories, 58
- Environmental data, 10–15
- Environmental effects of 1 year corrosion rates, 59
- Environmental monitoring, 2
- Escuela Tecnica Superior de Ingenieros Industriales Departamento Ingeniera Quimica, 6
- Exposure, 2, 15, 63
- Exposure Program initiation dates, 8

F
- Federal Republic of Germany (FRG)
 - atmospheric corrosion test sites, 3
 - Exposure Program initiation dates, 8
 - organizations participating in ISOCORRAG Program, 5
Specimen area (A), 2
Specimen evaluation, 2–9
Specimens, 2
Staatliches Materialprüfungsamt, 2, 5
Steel, corrosion losses of, 19–20, 34–35
corrosivity classification, 46–47
flat panels, 15–17
helices, 17–18
predicted loss vs. measured loss, 64
Sweden
atmospheric corrosion test sites, 3–4
Exposure Program initiation dates, 9
organizations participating in ISOCORRAG Program, 6
Swedish Corrosion Institute, 6

T
Technical Research Centre of Finland (VTT) Metallurgy Laboratory, 5
Test sites
atmospheric corrosion, 3–4
categories, corrosion losses of flat panels, 42–44
categories, corrosion losses of helices, 44–45
classification of, 40–42
elements of, 71
rural, changes of SO2 in, 15
Time exponent (B), 63
Time of exposure (t), 2
Time of wetness (TOW), 11–13, 59, 63

U
UK. See United Kingdom
Unalloyed carbon steel, 7
Union of Soviet Socialist Republics (USSR)
atmospheric corrosion test sites, 4
Exposure Program initiation dates, 9
organizations participating in ISOCORRAG Program, 6
United Kingdom (UK)
atmospheric corrosion test sites, 4
Exposure Program initiation dates, 9
organizations participating in ISOCORRAG Program, 6
United States (USA)
atmospheric corrosion test sites, 4
Exposure Program initiation dates, 9
organizations participating in ISOCORRAG Program, 6
UNS A91100, 2
UNS C10200, 2
UNS C11000, 2
UNS G10060, 2
UNS Z18002, 2
Urban atmospheric test sites, 71
USA. See United States
USSR. See Union of Soviet Socialist Republics

V
Variables, in standardized corrosivity, 58
VTT (Technical Research Centre of Finland) Metallurgy Laboratory, 5

W
Wetness, 11–13, 59, 63
WG 4 (Working Group 4), 1
Wilcoxon two samples rank test, 57
Wire helix, 2, 7, 15, 57–59
Working Group 4 (WG 4), 1

Z
Zinc, 7, 9
atmospheric corrosivity evaluation, 56
correlation and regression, 61
corrosion losses of, 20–24, 35–37
corrosive rates, 65
corrosivity classification, 48–49
observed vs. predicted values for, 63
predicted loss vs. measured loss, 64