Foreword

The Manual on the Use of Thermocouples in Temperature Measurement was sponsored by ASTM Committee E20 on Temperature Measurement and was compiled by E20.94, the Publications Subcommittee. The editorial work was co-ordinated by R. M. Park, Marlin Manufacturing Corp. Helen M. Hoersch was the ASTM editor.
Contents

Chapter 1—Introduction 1

Chapter 2—Principles of Thermoelectric Thermometry 4

2.0 Introduction 4

2.1 Practical Thermoelectric Circuits 5

2.1.1 The Thermoelectric Voltage Source 5

2.1.2 Absolute Seebeck Characteristics 5

2.1.2.1 The Fundamental Law of Thermoelectric Thermometry 8

2.1.2.2 Corollaries from the Fundamental Law of Thermoelectric Thermometry 10

2.1.2.3 The Seebeck EMF Cell 10

2.1.3 Inhomogeneous Thermoelements 11

2.1.4 Relative Seebeck Characteristics 11

2.2 Analysis of Some Practical Thermoelectric Circuits 18

2.2.1 Example: An Ideal Thermocouple Assembly 21

2.2.2 Example: A Nominal Base-Metal Thermocouple Assembly 22

2.2.3 Example: A Normal Precious-Metal Thermocouple Assembly with Improper Temperature Distribution 25

2.3 Historic Background 28

2.3.1 The Seebeck Effect 29

2.3.2 The Peltier Effect 30

2.3.3 The Thomson Effect 31

2.4 Elementary Theory of the Thermoelectric Effects 32

2.4.1 Traditional “Laws” of Thermoelectric Circuits 33

2.4.1.1 The “Law” of Homogeneous Metals 33

2.4.1.2 The “Law” of Intermediate Metals 33

2.4.1.3 The “Law” of Successive or Intermediate Temperatures 33

2.4.2 The Mechanisms of Thermoelectricity 34
2.4.3 The Thermodynamics of Thermoelectricity 36
 2.4.3.1 The Kelvin Relations 36
 2.4.3.2 The Onsager Relations 38

2.5 Summary of Chapter 2 39

2.6 References 40

2.7 Nomenclature 41

Chapter 3—Thermocouple Materials 43

3.1 Common Thermocouple Types 43
 3.1.1 General Application Data 45
 3.1.2 Properties of Thermoelement Materials 48

3.2 Extension Wires 51
 3.2.1 General Information 51
 3.2.2 Sources of Error 54

3.3 Nonstandardized Thermocouple Types 62
 3.3.1 Platinum Types 63
 3.3.1.1 Platinum-Rhodium Versus Platinum-Rhodium Thermocouples 63
 3.3.1.2 Platinum-15% Iridium Versus Palladium Thermocouples 65
 3.3.1.3 Platinum-5% Molybdenum Versus Platinum-0.8% Cobalt Thermocouples 67
 3.3.2 Iridium-Rhodium Types 68
 3.3.2.1 Iridium-Rhodium Versus Iridium Thermocouples 68
 3.3.2.2 Iridium-Rhodium Versus Platinum-Rhodium Thermocouples 69
 3.3.3 Platinel Types 71
 3.3.3.1 Platinel Thermocouples 71
 3.3.3.2 Pallador 73
 3.3.3.3 Pallador II 74
 3.3.4 Nickel-Chromium Types 75
 3.3.4.1 Nickel Chromium Alloy Thermocouples 75
 3.3.4.1.1 Geminol 75
 3.3.4.1.2 Thermo-Kanthal Special 75
 3.3.4.1.3 Tophel II-Nial II 75
 3.3.4.1.4 Chromel 3-G-345-Alumel 3-G-196 77
 3.3.5 Nickel-Molybdenum Types 78
Chapter 8—Calibration of Thermocouples

8.1 General Considerations

8.1.1 Temperature Scale

8.1.2 Reference Thermometers

8.1.2.1 Resistance Thermometers

8.1.2.2 Liquid-in-Glass Thermometers

8.1.2.3 Types E and T Thermocouples

8.1.2.4 Types R and S Thermocouples

8.1.2.5 High Temperature Standards

8.1.3 Annealing

8.1.4 Measurement of Emf

8.1.5 Homogeneity

8.1.6 General Calibration Methods

8.1.7 Calibration Uncertainties

8.1.7.1 Uncertainties Using Fixed Points

8.1.7.2 Uncertainties Using Comparison Methods

8.2 Calibration Using Fixed Points

8.2.1 Freezing Points

8.2.2 Melting Points

8.3 Calibration Using Comparison Methods

8.3.1 Laboratory Furnaces

8.3.1.1 Noble-Metal Thermocouples

8.3.1.2 Base-Metal Thermocouples

8.3.2 Stirred Liquid Baths

8.3.3 Fixed Installations

8.4 Interpolation Methods

8.5 Single Thermoelement Materials

8.5.1 Test Specimen

8.5.2 Reference Thermoelement

8.5.3 Reference Junction

8.5.4 Measuring Junction

8.5.5 Test Temperature Medium

8.5.6 Emf Indicator

8.5.7 Procedure

8.6 References

8.7 Bibliography

Chapter 9—Application Considerations

9.1 Temperature Measurement in Fluids

9.1.1 Response

9.1.2 Recovery

9.1.3 Thermowells

9.1.4 Thermal Analysis of an Installation
Chapter 12—Temperature Measurement Uncertainty 234

12.1 The General Problem 234
12.2 Tools of the Trade 235
 12.2.1 Average and Mean 235
 12.2.2 Normal or Gaussian Distribution 235
 12.2.3 Standard Deviation and Variance 235
 12.2.4 Bias, Precision, and Uncertainty 236
 12.2.5 Precision of the Mean 237
 12.2.6 Regression Line or Least-Square Line 237

12.3 Typical Applications 237
 12.3.1 General Considerations 237
 12.3.2 Wire Calibration 238
 12.3.3 Means and Profiles 240
 12.3.4 Probability Paper 242
 12.3.5 Regression Analyses 244

12.4 References 245

Chapter 13—Terminology 246

Appendix I—List of ASTM Standards Pertaining to Thermocouples 258

Appendix II—The International Temperature Scale of 1990 (ITS-90) (Reprinted from Metrologia, with permission) 260

Index 279
Acknowledgments

Editors for this Edition of the Handbook

Richard M. Park (Chairman), Marlin Mfg. Corp.
Radford M. Carroll (Secretary), Consultant
Philip Bliss, Consultant
Ronald R. Desmaris, RdF Corp.
Forrest B. Hall, Hoskins Mfg. Co.
Meyer B. Herzkovitz, Consultant
Douglas MacKenzie, ARi Industries, Inc.
Dr. Ray P. Reed, Sandia Natl. Labs.
Larry L. Sparks, Natl. Inst. Stand. Technol.
Dr. Teh Po Wang, Thermo Electric

Officers of Committee E20 on Temperature Measurement

J. A. Wise (Chairman), Natl. Inst. Stand. Technol.
R. M. Park (1st Vice Chairman), Marlin Mfg. Corp.
D. MacKenzie (2nd Vice Chairman), ARi Industries, Inc.
T. P. Wang (Secretary), Thermo Electric Co., Inc.
R. L. Shepard (Membership Secretary), Martin-Marietta Corp.

Those Primarily Responsible for Individual Chapters of this Edition

Introduction—R. M. Park
Thermoelectric Principles—Dr. R. P. Reed
Thermocouple Materials—M. B. Herzkovitz
Sensor Design—Dr. T. P. Wang
Compacted Sheathed Assemblies—D. MacKenzie
Emf Measurements—R. R. Desmaris
Reference Junctions—E. F. McGuire
Calibration—G. W. Burns
Applications—F. B. Hall
Reference Tables—G. W. Burns
Cryogenics—L. L. Sparks
Measurement Uncertainty—P. Bliss
Terminology—Dr. R. P. Reed
ASTM would like to express its gratitude to the authors of the 1993 Edition of this publication. The original publication made a significant contribution to the technology, and, therefore, ASTM, in its goal to publish books of technical significance, called upon current experts in the field to revise and update this important publication to reflect those changes and advancements that have taken place over the past 10 years.
List of Figures

FIG. 2.1—The Seebeck thermoelectric emf cell. (a) An isolated electric conductor. (b) Seebeck cell equivalent circuit element.

FIG. 2.2—Absolute Seebeck thermoelectric characteristics of pure materials. (a) Pure platinum. (b) Pure cobalt.

FIG. 2.3—Views of the elementary thermoelectric circuit. (a) Temperature zones of the circuit. (b) Junction temperature/circuit position (T/X) plot. (c) The electric equivalent circuit.

FIG. 2.4—The basic thermocouple with different temperature distributions. (a) Measuring junction at the highest temperature. (b) Measuring junction in an isothermal region. (c) Measuring junction at an intermediate temperature.

FIG. 2.5—Comparison of absolute and relative Seebeck emfs of representative thermoelements.

FIG. 2.6—Thermocouple circuits for thermometry. (a) Single reference junction thermocouple. (b) Dual reference thermocouple circuit. (c) Thermocouple with external reference junctions.

FIG. 2.7—Typical practical thermocouple assembly.

FIG. 2.8—Junction-temperature/circuit-position (T/X) plot used in error assessment of practical circuits. (a) Consequence of normal temperature distribution on elements of a nominal base-metal thermocouple circuit. (b) Consequence of an improper temperature distribution on a nominal precious-metal thermocouple assembly.

FIG. 3.1—Recommended upper temperature limits for Types K, E, J, T thermocouples.

FIG. 3.2—Thermal emf of thermoelements relative to platinum.
FIG. 3.3—Error due to ΔT between thermocouple-extension wire junctions.

FIG. 3.4—Thermal emf of platinum-rhodium versus platinum-rhodium thermocouples.

FIG. 3.5—Thermal emf of platinum-iridium versus palladium thermocouples.

FIG. 3.6—Thermal emf of platinum-molybdenum versus platinum-molybdenum thermocouples.

FIG. 3.7—Thermal emf of iridium-rhodium versus iridium thermocouples.

FIG. 3.8—Thermal emf of platinum thermocouples.

FIG. 3.9—Thermal emf of nickel-chromium alloy thermocouples.

FIG. 3.10—Thermal emf of nickel-molybdenum versus nickel thermocouples.

FIG. 3.11—Thermal emf of tungsten-rhenium versus tungsten-rhenium thermocouples.

FIG. 4.1—Typical thermocouple element assemblies.

FIG. 4.2—Cross-section examples of oval and circular hard-fired ceramic insulators.

FIG. 4.3—Examples of drilled thermowells.

FIG. 4.4—Typical examples of thermocouple assemblies with protecting tubes.

FIG. 4.5—Typical examples of thermocouple assemblies using quick disconnect connectors.

FIG. 5.1—Compacted ceramic insulated thermocouple showing its three parts.

FIG. 5.2—Nominal thermocouple sheath outside diameter versus internal dimensions.
FIG. 5.3—Exposed or bare wire junction.

FIG. 5.4—Grounded junction.

FIG. 5.5—Ungrounded or isolated junction.

FIG. 5.6—Reduced diameter junction.

FIG. 5.7—Termination with flexible connecting wires.

FIG. 5.8—Quick disconnect and screw terminals.

FIG. 5.9—Fittings to adapt into process line [up to 3.48×10^4 kPa (5000 psi)].

FIG. 5.10—Braze for high pressure operation [up to 6.89×10^5 kPa (100 000 psi)].

FIG. 5.11—Thermocouple in thermowell.

FIG. 6.1—A simple potentiometer circuit.

FIG. 7.1—Basic thermocouple circuit.

FIG. 7.2—Recommended ice bath for reference junction.

FIG. 8.1—Temperature emf plot of raw calibration data for an iron/constantan thermocouple.

FIG. 8.2—Difference plot of raw calibration data for an iron/constantan thermocouple.

FIG. 8.3—Typical determination of uncertainty envelope (from data of Fig. 8.2).

FIG. 8.4—Various possible empirical representations of the thermocouple characteristic (based on a single calibration run).

FIG. 8.5—Uncertainty envelope method for determining degree of least squares interpolating equation for a single calibration run (linear).
FIG. 8.6—Uncertainty envelope method for determining degree of least squares interpolating equation for a single calibration run (cubic).

FIG. 8.7—Circuit diagram for thermal emf test.

FIG. 9.1—Graphical presentation of ramp and step changes.

FIG. 9.2—Common attachment methods.

FIG. 9.3—Separated junction.

FIG. 9.4—Types of junction using metal sheathed thermocouples.

FIG. 9.5—Thermocouple probe with auxiliary heater, diagramatic arrangement.

FIG. 9.6—Three wire Type K thermocouple to compensate for voltage drop induced by surface current. (Other materials may be used.)

FIG. 9.7—Commercially available types of surface thermocouples.

FIG. 9.8—Commercial probe thermocouple junctions.

FIG. 11.1—Seebeck coefficients for Types E, K, T, and KP versus Au-0.07 Fe.

FIG. 12.1—Bias of a typical Type K wire.

FIG. 12.2—Typical probability plot.

FIG. 12.3—Typical probability plot—truncated data.

APPENDIX II FIG. 1—The differences ($t_{90} - t_{68}$) as a function of Celsius temperature t_{90}.

Page numbers: 163, 164, 171, 177, 178, 179, 179, 180, 184, 185, 215, 239, 242, 243, 263
List of Tables

TABLE 3.1—Recommended upper temperature limits for protected thermocouples. 44
TABLE 3.2—Nominal Seebeck coefficients. 46
TABLE 3.3—Nominal chemical composition of thermoelements. 49
TABLE 3.4—Environmental limitations of thermoelements. 50
TABLE 3.5—Recommended upper temperature limits for protected thermoelements. 52
TABLE 3.6—Seebeck coefficient (thermoelectric power) of thermoelements with respect to Platinum 67 (typical values). 53
TABLE 3.7—Typical physical properties of thermoelement materials. 54
TABLE 3.8—Thermoelements—resistance to change with increasing temperature. 56
TABLE 3.9—Nominal resistance of thermoelements. 57
TABLE 3.10—Extension wires for thermocouples mentioned in Chapter 3. 60
TABLE 3.11—Platinum-rhodium versus platinum-rhodium thermocouples. 65
TABLE 3.12—Platinum-iridium versus palladium thermocouples. 67
TABLE 3.13—Platinum-molybdenum versus platinum-molybdenum thermocouples. 69
TABLE 3.14—Iridium-rhodium versus iridium thermocouples. 71
TABLE 3.15—Platinel thermocouples. 73
TABLE 8.3—Calibration uncertainties using fixed point techniques.

TABLE 8.4—Calibration uncertainties using comparison techniques in laboratory furnaces (Types R or S standards).

TABLE 8.5—Calibration uncertainties using comparison techniques in stirred liquid baths.

TABLE 8.6—Calibration uncertainties: tungsten-rhenium type thermocouples.

TABLE 8.7—Calibration uncertainties using comparison techniques in special furnaces (visual optical pyrometer standard).

TABLE 10.1—Tolerances on initial values of emf versus temperature.

TABLE 10.2—Type B thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.3—Type B thermocouples: emf-temperature (°F) reference table.

TABLE 10.4—Type E thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.5—Type E thermocouples: emf-temperature (°F) reference table.

TABLE 10.6—Type J thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.7—Type J thermocouples: emf-temperature (°F) reference table.

TABLE 10.8—Type K thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.9—Type K thermocouples: emf-temperature (°F) reference table.
TABLE 10.10—Type N thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.11—Type N thermocouples: emf-temperature (°F) reference table.

TABLE 10.12—Type R thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.13—Type R thermocouples: emf-temperature (°F) reference table.

TABLE 10.14—Type S thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.15—Type S thermocouples: emf-temperature (°F) reference table.

TABLE 10.16—Type T thermocouples: emf-temperature (°C) reference table and equations.

TABLE 10.17—Type T thermocouples: emf-temperature (°F) reference table.

TABLE 10.18—Type B thermocouples: coefficients (c_i) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.19—Type E thermocouples: coefficients (c_i) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.20—Type J thermocouples: coefficients (c_i) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.21—Type K thermocouples: coefficients (c_i) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.
TABLE 10.22—Type N thermocouples: coefficients \((c_i)\) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.23—Type R thermocouples: coefficients \((c_i)\) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.24—Type S thermocouples: coefficients \((c_i)\) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 10.25—Type T thermocouples: coefficients \((c_i)\) of polynomials for the computation of temperatures in °C as a function of the thermocouple emf in various temperature and emf ranges.

TABLE 11.1—Type E thermocouple: thermoelectric voltage, \(E(T)\), Seebeck coefficient, \(S(T)\), and derivative of the Seebeck coefficient, \(dS/dT\).

TABLE 11.2—Type T thermocouple: thermoelectric voltage, \(E(T)\), Seebeck coefficient, \(S(T)\), and derivative of the Seebeck coefficient, \(dS/dT\).

TABLE 11.3—Type K thermocouple: thermoelectric voltage, \(E(T)\), Seebeck coefficient, \(S(T)\), and derivative of the Seebeck coefficient, \(dS/dT\).

TABLE 11.4—KP or EP versus gold-0.07 atomic percent iron thermocouple: thermoelectric voltage, Seebeck coefficient, and derivative of the Seebeck coefficient.

TABLE 12.1—Accuracy of unsheathed thermocouples.

TABLE 12.2—Accuracy of sheathed thermocouples.