Subject Index

A

Abbreviations
- occupational safety and health, labs, 673–674
- specimen preparation, 221

Abrasive cut-off machines, 36–43
- design principles of wheel-work piece contact, 36–39
- machine designs, 39–43

Abrasive cut-off wheels, 32–36
- consumable wheels, 32–34
- slow consumable wheels, 34–36

Abrasives, 18–19
- aluminum oxide, 18
- cubic boron nitride, 18
- diamond, 18–19
- polishing, 129–132
- silicon carbide, 18
- wet abrasive cutting, sectioning, 16–21

Acrylics
- occupational safety and health, labs, 668
- specimen preparation, 436–439

After preparation cleaning, 82–84

Agency for Toxic Substance and Disease Registry (ATSDR), 683–684

Alcohol-based grinding/polishing fluids, 97

Alumina wet grinding paper, 105–106

Aluminum
- electrolytic polishing and etching, 464
- specimen preparation, 352–356

Aluminum alloys, 356–358

Aluminum oxide
- abrasive types, 18
- grinding abrasives, 93
- specimen preparation, 238–240

American Conference of Government Industrial Hygienists (ACGIH), 683

Analog cameras, automatic image analysis, 614–615

Anodic etching, 172–173

Anodized coatings, specimen preparation, 247–251

Anodizing, etching, 173

Antimony, specimen preparation, 361–364

Arc of contact, metallographic/materialographic cutting operation, 31

Archiving, 619

Artifacts of electrolytic polishing, selection of preparation method, 7

ASTM B 487, 576

ASTM C 664, 576

ASTM E 45, 570

ASTM E 112, 571–573

ASTM E 562, 569

ASTM E 930, 573

ASTM E 1077, 575

ASTM E 1122, 570

ASTM E 1181, 573

ASTM E 1245, 570

ASTM E 1268, 574

ASTM E 1382, 573

ASTM E 1578, 619

ASTM E 2014, 668, 674

ASTM E 2109, 574–575

ASTM standards
- cutting fluids, wet abrasive cutting, 29
- hardness, 625
- metallography, 188–193

Atomic force microscope (AFM), 561

Automatic grinding equipment, 119, 135

Automatic image analysis, 577–617
- analog cameras, 614–615
- automatic measurements, 600–602
- background correction, 586–588
- banding degree, 608
- brightness and contrast, 581–586
- cameras, 614–615
- compacted graphite, 613
- computers, 614
- contrast stretching, 588–589
- depth measurements, 608–610
- digital cameras, 615–616
- digital imaging, 579, 602–613
- digital imaging technology, 613–616
- ductile cast iron, 611–613
- grain size, 606–608
- graphite in iron castings, 610–611
- gray cast iron, 613
- hardware, 613–616

727
Cerium oxide, specimen preparation, 241
Chemical disposals, occupational safety and health, labs, 672–673
Chemical etching, 172
Chemical mechanical polishing (CMP), 7, 151–152
Chemical microetching, examination purpose, 194–217
Chemical polishing, 7
 electrolytic polishing/etching, 168
Chips, sliding, plowing, grinding mechanics, 22
Chromium
 electrolytic polishing
 and etching, 464–465
 specimen preparation, 367–370
Chromium carbide, specimen preparation, 232–235
Chromium oxide, specimen preparation, 238–240
Circular sawing, 48
Clamping, thermal damage, wet abrasive cutting, 24–25
Classical etching, 172
Classification of materials, specimen material, 181
Cleaning, 82–84
 after preparation, 82–84
 drying, 83
 ethanol, 83
 grinding disks, 84
 hand, 82–83
 polishing cloths, 84
 before preparation start, 82
 rubbing effect, 83
 ultrasonic, 83
 ultrasonic apparatuses, 83
Cleanliness, 84
Cloths, polishing, 124–129
Coatings, specimen material, 182–183
Cobalt
 electrolytic polishing
 and etching, 465–466
 specimen preparation, 370–373
Cobalt-based super alloys, specimen preparation, 373–376
Cold mounting resins, occupational safety and health, labs, 667
Color etching, 172
Color ratings system, occupational safety and health, labs, 669
Compacted graphite, automatic image analysis, 613
Comparison procedure, quantitative metallography/materialography, 571–572
Composites
 specimen material, 183
 specimen preparation, 276–281
Compressed air, cleaning, 83
Computers, automatic image analysis, 614
Concrete, specimen preparation, 346–349
Confocal laser scan microscope, 552–555
Consumable abrasive cut-off wheels storing, 33–34
 wheel dimensions, 33
 wheel velocity, 32–33
Consumables, specimen preparation, 221
Contemporary grinding, 106–117
 diamond film, 109
 diamond pads, 109
 fine grinding cloths, 116
 magnetic fixation, 106–107
 metal-bonded diamond-coated disks, 109
 resin-bonded diamond grinding disks, 107–108
 resin-bonded SiC grinding disks, 108
 rigid composite disks, 109–116
Contrast stretching, automatic image analysis, 588–589
Cooling, cutting fluids, 26
Cooling system, cutting fluids, wet abrasive cutting, 27–28
Copper
 electrolytic polishing
 and etching, 466
 specimen preparation, 376–380
Copper-bearing alloys, specimen preparation, 380–383
Cubic boron nitride, abrasive types, 18
Cubic boron nitride (CBN), grinding abrasives, 97
Cut-off grinding process, wet abrasive cutting, sectioning, 15–16
Cut-off wheel
 abrasive types, 18–19
 bond material, 20–21
 grade, 20
 grain size, 19–20
 rpm, 30
 selection, 44–45
 specifications, 16–18
 structure, 20
 truing and dressing, 26
 wear, 25–26
 wet abrasive cutting, sectioning, 16–21
Cutting fluids, 26–29
 ASTM standards, 29
 bacteria and fungi, 28–29
 bandsawing, 51
 cooling system, 27–28
 grinding fluid application, 27
 grinding fluid concentration, 28
 grinding fluid disposal, 29
 health and safety aspects, 29
 lubrication and cooling, 26
 synthetic grinding fluids-oil-based, 26–27
 water quality, 28
CVD coatings, specimen preparation, 247–251

Depth measurements, automatic image analysis, 608–610
Design principles of wheel-work piece contact
 abrasive cut-off machines, 36–39
 direct cutting, 36
 oscillating cutting, 36–37
 rotating work piece, 39
 step cutting, 38–39
Diamond products
 abrasive types, 18–19
 film, 109
 fixed grains, 95
 grinding abrasives, 94–96
 loose grains, 95–96
 monocrystalline, 94
 pads, 109
 pastes, 96
 polycrystalline, 94
 sprays, 96
 suspensions, 96
Differential interference contrast (DIC), etching, 169
Diffusion coatings, specimen preparation, 251–254
Digital cameras, automatic image preparation, 251–254
Digital image management, 619
Digital imaging, automatic image analysis, 579, 602–613
Digital imaging technology, automatic image analysis, 613–616
Diodes, specimen preparation, 281–284
Direct cutting, design principles of wheel-work piece contact, 36
Documentation, optical reflected light microscope, 550–552
Drying, cleaning, 83
Ductile cast iron, automatic image analysis, 611–613
Dust, occupational safety and health, labs, 667
Dynamic hardness testing procedures, 644–645

E
Economy, grinding, traditional, 105
Edge retention, grinding, traditional, 103–105
Education, labs, 651
Electric discharge machining (EDM), sectioning by melting, 46
Electrolytes, polishing/etching, 163–164
Electrolytic polishing and etching, 172–173, 453–475
 aluminum, 464
 bronze, 467
 chromium, 464–465
 cobalt, 465–466
 copper, 466
 gray cast iron, 459
 hard metals, 474–475
 heat treated steels, 459–460
 high carbon steels, 457
 high-speed steels, 462–463
 iron, 462
 lead, 467–468
 low-alloyed tool steels, 463
 low carbon steels, 457–458
 magnesium, 468–469
 nickel, 469
 silver, 469–470
 stainless steels, 460–461
 super alloys, 461
 tin, 470–471
 titanium, 471
 tungsten, 472
 vanadium, 472–473
 zinc, 473
 zirconium, 474
Electrolytic polishing/etching, 156–168
 chemical polishing, 168
 electrolytes, 163–164
 electrolytic thinning for transmission electron microscope (TEM), 167–168
 electropolishing in practice, 164–165
 equipment, 165–166
 field metallography, 166–167
 nondestructive electropolishing, 166–167
 occupational safety and health, labs, 665
 process, 156–163
Electrolytic polishing etching, artifacts, 7
Electrolytic thinning for transmission electron microscope (TEM), 167–168
Electrolytically deposited coatings, 251–254
Electron backscatter diffraction (EBSD), 559–560
 polishing, 149–150
Electron microscopy, 558–561
 atomic force microscope (AFM), 561
 electron backscatter diffraction (EBSD), 559–560
 electron probe microanalyzer (EPMA), 560
 energy dispersive spectroscopy (EDS), 559
 focused ion beam (FIB), 560
 magnetic force microscopy (MFM), 561
 scanning electron microscope (SEM), 558–559
 scanning probe microscopes (SPM), 560–561
 scanning transmission electron microscope (STEM), 558
 transmission electron microscope (TEM), 558
Electron probe microanalyzer (EPMA), 560
Electropolishing in practice, 164–165
Energy dispersive spectroscopy (EDS), 559
Engraving, marking, 80
Environment, grinding, traditional, 105
Environmental Protection Agency (EPA), 683
EPDM polymers, 430–436
Epoxy, occupational safety and health, labs, 667
Equipment
 electropolishing/etching, 165–166
 labs, 656–660
 Equotip tester, 645
Etchant names, examination purpose, 217
Etching, 169–176
 anodic, 172–173
 anodizing, 173
 chemical, 172
classical, 172
color, 172
dark-field illumination (DF), 169
differential interference contrast (DIC), 169
electrolytic, 172–173
examination purpose, 194
fluorescence, 170
grain boundary etching, 171
grain contrast etching, 170–171
heat tinting, 172
ion, 173–174
macroetching, 174–175
microetching, 169
microscope techniques, 169–170
occupational safety and health, labs, 665–666
physical, 173–174
polarized light (POL), 169–170
potentiostatic, 173
preparation process, 13
reactive sputtering, 174
relief polishing, 173
reproducibility, 171–172
sputtering, 174
thermal, 174
vapor deposition, 174
Ethanol, cleaning, 83
European Union (EU), occupational safety and health, labs, 669–670, 684
Examination purpose, 179, 188
ASTM standards, 188–217
chemical microetching, 194–217
etchant names, 217
etching practice, 194
Eyepieces, optical reflected light microscope, 535–536

F

Failure analysis, labs, 651
Feed speed, metallographic/materialographic cutting operation, 30–31
Ferrous metals, specimen material, 183–184
Field metallography
electrolytic polishing/etching, 166–167
polishing, 150–151
Field metallography/materialography, specimen preparation, 475–476
Field selection, quantitative metallography/materialography, 568–569
Fine grinding, 86, 119
Fine grinding cloths, 116
Fixed grains, diamond products, 95
Flammable and Combustible Liquids, 680
Flammable liquids, occupational safety and health, labs, 667
Fluorescence, etching, 170
Focused ion beam (FIB), 560
Force
material removal, grinding, 89
metallographic/materialographic cutting operation, 30
Fracturing, sectioning, 45
Free cutting, 31–32
automatics, 32
hand, 32

G

Galvanization, specimen preparation, 251–254
General Description and Discussion of the Levels of Protection and Protective Gear, 680–681
General studies or routine work, 14
General use, machine designs, abrasive cut-off, 40–41
Generic methods, specimen preparation, 219
Germanium, specimen preparation, 288–291
Glasses, specimen preparation, 244–247
Gold, specimen preparation, 384–387
Grades
cut-off wheel, 20
hard, 20
soft, 20
Grain boundary etching, 171
Grain contrast etching, 170–171
Grain penetration, material removal, grinding, 89
Grain shape, material removal, grinding, 88
Grain size
automatic image analysis, 606–608
cut-off wheel, 19–20
quantitative metallography/materialography, 571–573
Graphite in iron castings, automatic image analysis, 610–611
Gray cast iron
automatic image analysis, 613
electrolytic polishing and etching, 459
specimen preparation, 315–318
Grinding, 85–86
chips, sliding, plowing, 22
contemporary, 106–117
deformation, 86, 89–93
fine, 86
material removal, 86–89
plane, 85
traditional, 99–106
wet abrasive cutting, sectioning, 21–22
Grinding, traditional, 99–106
alumina wet grinding paper, 105–106
economy, 105
edge retention, 103–105
environment, 105
relief, 103–105
SiC wet grinding paper, 100–105
stones/disks, 99–100
zirconia alumina wet grinding paper, 105–106
Grinding abrasives, 93–97
aluminum oxide, 93
boron carbide, 97
cubic boron nitride (CBN), 97
diamond, 94–96
silicon carbide, 93
Grinding disks cleaning, 84
Grinding fluid
application, 27
concentration, 28
disposal, 29
Grinding/polishing equipment, 117–119
automatic grinding, 119
fine grinding, 119
manual grinding, 117–119
plane grinding, 117–119
Grinding/polishing fluids, 89, 97–99
alcohol-based, 97
oil-based, 98–99
water-based, 97
water-oil based, 98
Grit number, 19

H
Hacksawing, 48
Hand cleaning, 82–83
Hard grade, 20
Hard metals, electrolytic polishing and etching, 474–475
Hardness, 623–625
ASTM standards, 625
indentation, 623–624
testing special methods, 646
Hardness values
conversion, 642–643
precision, 642
Hardware, automatic image analysis, 613–616
Hazard Communication Standard (HCS), OSHA standard, 674–679
Health and safety aspects, cutting fluids, 29
Heat tinting, etching, 172
Heat treated steels, electrolytic polishing and etching, 459–460
High-alloy steels, specimen preparation, 325–328
High carbon steels
electrolytic polishing and etching, 457
specimen preparation, 307–311
High-speed steels
electrolytic polishing and etching, 462–463
specimen preparation, 343–346
Histogram, automatic image analysis, 581
HMIS, occupational safety and health, labs, 670
Hot dip zinc coatings, specimen preparation, 254–257
Human eye, light microscopy, 526–527
Hydroxyapatite (HA) coating, specimen preparation, 223–226

I

Identification tag marking, 80
Illumination, optical reflected light microscope, 536–537
Image
acquisition, 579–580
calibration, 595–598
digitization, 580–581
measurement, automatic image analysis, 598–602
processing, automatic image analysis, 586–595
Implementation, automatic image analysis, 617–618
Inclusion rating
automatic image analysis, 603–606
quantitative metallography/materialography, 570
Indentation hardness, 623–624
Instrumented indentation testing, 641–642
Integrated circuits, specimen preparation, 301–305
Intercept procedure, quantitative metallography/materialography, 572–573
International Chemical Safety Cards, 682–683
Ion etching, 173–174
Iron, electrolytic polishing and etching, 462

J

Job Safety Analysis (JSA), 670–672

K

Knoop hardness testing, 633–634

Laboratory information management systems (LIMS), 619
Labs, 649
automation, 651–654
building, 649, 650–663
education, 651
equipment, 656–660
failure analysis, 651
layout, 660–662
maintenance, 662–663
occupational safety and health, 649, 664–684
planning, 654–656
purpose, 650
quality control, 650
rationalization, 651–654
research, 651
running, 649
testing and inspection labs, 651
Laser torching, sectioning by melting, 46
Layout, labs, 660–662
Lead
electrolytic polishing and etching, 467–468
specimen preparation, 387–391
Light microscopy, 525–527
human eye, 526–527
magnification, 527
magnifying lens and microscope, 527
visible light, 525–526
List of Highly Hazardous Chemicals, Toxics and Reactives, OSHA standards, 680
Literature, occupational safety and health, labs, 684–686
Loose grains, diamond products, 95–96
Low-alloy steels, specimen preparation, 336–339
Low-alloyed steels, electrolytic polishing and etching, 463
Low carbon steels
electrolytic polishing and etching, 457–458
specimen preparation, 311–314
Lubricants, 97–99
cutting fluids, 26

M

Machine designs, 39–43
general use, 40–41
polishing, 135–139
precision, 41–43
Machines, bandsawing, 49–51
Macroetching, 174–175
Magnesium
electrolytic polishing and etching, 468–469
specimen preparation, 391–394
Magnesium oxide, specimen preparation, 241
Magnetic fixation, contemporary grinding, 106–107
Magnetic force microscopy (MFM), 561
Magnification, light microscopy, 527
Magnifying lens and microscope, 527
Maintenance, labs, 662–663, 673
Malleable cast iron, specimen preparation, 315–318
Manganese, specimen preparation, 395–397
Manual grinding equipment, 117–119, 135
Manual measurements, automatic image analysis, 599–600
Marking, 80
engraving, 80
identification tag, 80
stamping, 80
with waterproof ink, 80
Martens scratch hardness, 646
Material exam, 179
Material removal, 86–89
force on specimens, 89
grain penetration, 89
grain shape, 88
grinding, 86
grinding/polishing fluids, 89
polishing, 120–122
rake angle, 87–88
Material Safety Data Sheet (MSDS), occupational safety and health, labs, 670–672
Materialographic specimen, 7–9

specimen or sample, 8–9
Materialography, 3
Mechanical damage, wet abrasive cutting, 22–23
unplane surface, 23
waviness, 23
Mechanical polishing artifacts, selection of preparation method, 7
Mechanical preparation, occupational safety and health, labs, 665
Mechanical surface preparation, see grinding
Medium carbon steels, specimen preparation, 307–311
Metal-bonded diamond-coated disks, contemporary grinding, 109
Metallographic/materialographic cutting operation
arc of contact, 31
cut-off wheel rpm, 30
feed speed, 30–31
force, 30
free cutting, 31–32
power, 31
wet abrasive cutting, sectioning, 29–32
wheel velocity, 30

Metallographic/materialographic preparation, 5–6
Metallography, 3
Metals, deformation, grinding, 89–92
Microelectronic material, specimen preparation, 291–293
Microelectronic materials, polishing, 143–147
Microelectronic packages polishing, 147–149
specimen preparation, 295–298, 301–305
Microetching, 169
Microindentation hardness, 636–639
Microscopes
options, 537–538
techniques, etching, 169–170
Microtomy, polishing, 155
Mineralogical materials, specimen material, 184
Minerals, ores, specimen preparation, 349–352
Mohs scratch hardness, 646
Molybdenum, specimen preparation, 398–401
Monocrystalline, diamond products, 94
Mounting
 occupational safety and health, labs, 664–665
preparation process, 11

N
National Fire Protection Association
(NFPA), 684
National Paint and Coatings Association, 684
National Technical Information Service
(NTIS), 683
National Toxicology Program (NTP), 683
NFPA 704 Hazard Identification
Ratings System, 668–669
Nickel
 electrolytic polishing and etching, 469
 specimen preparation, 402–405
NIOSH standards, 681–682
Nodular cast iron, specimen
preparation, 319–321
Nondestructive electropolishing,
electrolytic polishing/etching,
166–167
Nonferrous metals, specimen material,
184–186

O
Occupational Exposure to Hazardous
Chemicals in Laboratories, 679–680
Occupational Safety and Health Administration (OSHA) standards
Availability of NIOSH Registry of Toxic Effects of Chemical Substances, 681
Flammable and Combustible Liquids, 680
General Description and Discussion of the Levels of Protection and Protective Gear,
680–681
Hazard Communication Standard (HCS), 674–679
List of Highly Hazardous Chemicals, Toxics and Reactives, 680
Occupational Exposure to Hazardous Chemicals in Laboratories, 679–680
Occupational safety and health labs, 649, 664–684
abbreviations, 673–674
acrylics, 668
Agency for Toxic Substance and Disease Registry (ATSDR), 683–684
American Conference of Government Industrial Hygienists (ACGIH), 683
ASTM E 2014, 668, 674
British Standards Institution, 684
cold mounting resins, 667
color ratings system, 669
dangers, 664
dust, 667
electrolytic polishing/etching, 665
Environmental Protection Agency (EPA), 683
epoxy, 667
etching, 665–666
EU system, 669–670
European Union (EU), 684
flammable liquids, 667
HMIS, 670
International Chemical Safety Cards, 682–683
Job Safety Analysis (JSA), 670–672
literature, 684–686
maintenance and service, 673
Material Safety Data Sheet (MSDS), 670–672
mechanical preparation, 665
mounting, 664–665
National Fire Protection Association (NFPA), 684
National Paint and Coatings Association, 684
P

Paint layers, specimen preparation, 257–260
Palladium, specimen preparation, 406–409
Parameters, specimen preparation, 220–221
Pastes, diamond products, 96
Path of light rays, optical reflected light microscope, 528
PCB coupon, specimen preparation, 305–307
Percent area, automatic image analysis, 602–603
Phenolic bond, 20–21
Physical etching, 173–174
Pitting, 9
Plane grinding, 85, 117–119
Planimetric procedure, quantitative metallography/materialography, 572
Planning, labs, 654–656
Plasma spray coatings, specimen preparation, 265–267, 270–273
Plasma torching, sectioning by melting, 46
Plated coatings, specimen preparation, 251–254
Point count, quantitative metallography/materialography, 569
Polarized light (POL), etching, 169–170
Poldi impact hardness tester, 644
Polishing, 120–155
abrasives, 129–132
automatic grinding/polishing equipment, 135
automatic systems, 140–143
chemical mechanical polishing (CMP), 151–152
cloths, 84, 124–129
deforestation, 122–124
dynamics, 139–140
electron backscatter diffraction (EBSD), 149–150
field metallography, 150–151
machine design, 135–139
manual grinding/polishing equipment, 135
material removal, 120–122

Oil-based grinding/polishing fluids, 98–99
Open source/public domain software, image analysis, 617
Optical examination methods, reflected light microscope, 540–546
Optical fibers, specimen preparation, 244–247
Optical reflected light microscope, 528–555
confocal laser scan microscope, 552–555
documentation, 550–552
eyepieces, 535–536
illumination, 536–537
microscope options, 537–538
optical examination methods, 540–546
path of light rays, 528
practical use of microscope, 546–550
reflected-light microscope, 538–540
stereo microscopy, 555–557
Ores, specimen preparation, 349–352
Organic materials, specimen material, 186–187
Oscillating cutting, design principles of wheel-work piece contact, 36–37
Oxyacetylene torching, 46

Subject Index 737
microelectronic materials, 143–147
microelectronic packages, 147–149
microtomy, 155
polishing dynamics, 139–140
preparation methods, 132–134
printed circuit boards (PCB), 143
rough, 120
semiautomatic systems, 140–143
thin sections, 152–154
ultramilling, 155
Polycrystalline diamond products, 94
Polyesters, occupational safety and health, labs, 668
Polymers, specimen material, 187
Porosity in thermal spray coatings, 574–575
Potentiostatic etching, 173
Powder metals
specimen material, 187
specimen preparation, 439–443
Power, metallographic/
materialographic cutting operation, 31
Power hacksawing, 48
Practical use of microscope, 546–550
Precipitation etching, 172
Precision
cut-off, slow consumable wheels, 35
machine designs, abrasive, 41–43
Preparation methods
polishing, 132–134
selection of preparation method, 7
Preparation process, 9–13
etching, 13
mounting, 11
sectioning, 10–11
surface preparation, 11–13
Preservation, 81
Printed circuit boards (PCB), polishing, 143
Printers, automatic image analysis, 616
Process, electrolytic polishing/etching, 156–163
Punching, shearing, 47
Purpose, labs, 650
PVD coatings, specimen preparation, 247–251
Q
Quality control labs, 650
Quantitative metallography/
materialography, 565–576
ASTM B 487, 576
ASTM C 664, 576
ASTM E 45, 570
ASTM E 112, 571–573
ASTM E 562, 569
ASTM E 930, 573
ASTM E 1077, 575
ASTM E 1122, 570
ASTM E 1181, 573
ASTM E 1245, 570
ASTM E 1268, 574
ASTM E 1382, 573
ASTM E 2109, 574–575
banding, 574
bias, 568–569
calibration, 568
color comparison procedure, 571–572
decarburization, 575–576
field selection, 568–569
grain size, 571–573
inclusion rating, 570
intercept procedure, 572–573
other standards, 576
planimetric procedure, 572
point count, 569
porosity in thermal spray coatings, 574–575
specimen preparation, 567–568
stereology, 565–567
volume fraction, 569
R
Rake angle, material removal, grinding, 87–88
Rationalization, labs, 651–654
Reactive sputtering, etching, 174
Reflected-light microscope, 538–540
Relief
grinding, 103–105
polishing, 173
Reporting locations, 15
Reproducibility, etching, 171–172
Research labs, 651
Research studies, 14
Resin-bonded diamond grinding disks, 107–108
Resin-bonded SiC grinding disks, 108
Resistors, specimen preparation, 293–295
Rigid composite disks, grinding, 109–116
Risk phrases, occupational safety and health, labs, 670
Rockwell hardness testing, 634–636
Rotating work piece, 39
Rough polishing, 120
Rubber bonds, 21
Rubbing effect, cleaning, 83
Running labs, 649

S

Safety
bandsawing, 49
occupational safety and health, labs, 664–672
Sample, materialographic specimen, 8–9
Sawing
bandsawing, 48–52
circular sawing, 48
hacksawing, 48
power hacksawing, 48
sectioning, 47–52
Scanning electron microscope (SEM), 558–559
Scanning probe microscopes (SPM), 558–561, 560–561
Scanning transmission electron microscope (STEM), 558
Scleroscope, 645
Section type, selection, sectioning, 14–15
Sectioning, 14–53, 15
abrasive cut-off machines, 36–43
abrasive cut-off wheels, 32–36
fracturing, 45
occupational safety and health, labs, 664
other methods, 45–53
preparation process, 10–11
sawing, 47–52
sectioning by melting, 46
selection, 14–15
shearing, 46–47
wet abrasive cutting, 15–32
wet abrasive cutting tips, 43–45
wire cutting, 52–53
Sectioning by melting, 46
electric discharge machining (EDM), 46
laser torching, 46
oxyacetylene torching, 46
plasma torching, 46
Selection, sectioning, 14–15
general studies or routine work, 14
reporting locations, 15
research studies, 14
section type, 14–15
study of failures, 14
Selection of preparation method, 6–7
artifacts of electrolytic polishing, 7
artifacts of mechanical polishing, 7
preparation methods, 7
Semiautomatic systems, polishing, 140–143
Semiconductors, specimen preparation, 288–291
Sharpening, automatic image analysis, 593–595
Shearing
punching, 47
sectioning, 46–47
Si wafers, specimen preparation, 288–291
SiC fibers in Ti matrix, specimen preparation, 273–276
SiC wet grinding paper, 100–105
Silicon, specimen preparation, 288–291
Silicon carbide
abrasive types, 18
grinding abrasives, 93
Silicon nitride, specimen preparation, 235–237
Silicon oxide, specimen preparation, 241
Silver
 electrolytic polishing and etching, 469–470
 specimen preparation, 409–412
Sintered carbides
 specimen material, 187
 specimen preparation, 443–447
Slow consumable wheels
 precision cut-off, 35
 storing, 36
 truing and dressing, 34–35
 use, 35
 wheel dimensions, 35
 wheel velocity, 35
Smoothing, automatic image analysis, 592–593
Soft grade, 20
Software, automatic image analysis, 616–617
Solder balls, specimen preparation, 295–298
Sorby, Henry Clifton, 5–6
Special methods hardness testing, 646
Specimen material, 179, 181–187
 ceramics, 182
 classification of materials, 181
 coatings, 182–183
 composites, 183
 ferrous metals, 183–184
 materialographic specimen, 8–9
 mineralogical materials, 184
 nonferrous metals, 184–186
 organic materials, 186–187
 polymers, 187
 powder metals, 187
 sintered carbides, 187
Specimen preparation, 179–180, 218–521
 abbreviations, 221
 acrylics, 436–439
 aluminum, 352–356
 aluminum alloys, 356–358
 aluminum oxide, 238–240
 anodized coatings, 247–251
 antimony, 361–364
 barium titanate, 241
 beryllium, 365–367
 bones, 427–430
 boron carbide, 227–232
 brass, 376–380
 bronze, 376–380
 calcium oxide, 241
 capacitors, 298–300
 carbonitrided steels, 339–342
 cement clinker, 346–349
 ceramic capacitors, 281–284
 ceramic layers, 268–270
 ceramic resistors, 281–284
 ceramics, 232–235
 cerium oxide, 241
 chromium, 367–370
 chromium carbide, 232–235
 chromium oxide, 238–240
 cobalt, 370–373
 cobalt-based super alloys, 373–376
 composites, 276–281
 concrete, 346–349
 consumables, 221
 copper, 376–380
 copper-bearing alloys, 380–383
 CVD coatings, 247–251
 diffusion coatings, 251–254
 diodes, 281–284
 electrolytic polishing and etching, 453–475
 electrolytically deposited coatings, 251–254
 EPDM polymers, 430–436
 field metallography/materialography, 475–476
 galvanization, 251–254
 generic methods, 219
 germanium, 288–291
 glasses, 244–247
 gold, 384–387
 gray cast iron, 315–318
 high-alloy steels, 325–328
 high carbon steels, 307–311
 high-speed steels, 343–346
 hot dip zinc coatings, 254–257
 hydroxyapatite (HA) coating, 223–226
 integrated circuits, 301–305
lead, 387–391
low-alloy steels, 336–339
low carbon steels, 311–314
magnesium, 391–394
magnesium oxide, 241
malleable cast iron, 315–318
manganese, 395–397
medium carbon steels, 307–311
microelectronic material, 291–293
microelectronic packages, 295–298, 301–305
minerals, ores, 349–352
molybdenum, 398–400
nickel, 402–405
nodular cast iron, 319–321
optical fibers, 244–247
paint layers, 257–260
palladium, 406–409
parameters, 220–221
PCB coupon, 305–307
plasma spray coatings, 265–267, 270–273
plated coatings, 251–254
powder metals, 439–443
PVD coatings, 247–251
quantitative metallography/materialography, 567–568
resistors, 293–295
semiconductors, 288–291
Si wafers, 288–291
SiC fibers in Ti matrix, 273–276
silicon, 288–291
silicon nitride, 235–237
silicon oxide, 241
silver, 409–412
sintered carbides, 443–447
solder balls, 295–298
stainless steels, 328–333
steps, 219–220
super alloys, 333–335
teeth, 427–430
thermal spray coatings, 260–265
tin, 413–416
tin cubic boron nitride, 232–235
tissue, 427–430
titanium, 416–420
titanium carbide, 232–235
titanium nitride, 232–235
transistors, 301–305
trouble shooting, 476–521
tungsten carbide, 232–235
uranium, 447–450
white cast iron, 322–324
wrought aluminum alloys, 359–361
YBCO ceramic super conductors, 285–288
zinc, 420–423
zinc oxide, 241
zirconium, 424–427
zirconium dioxide, 241
Sprays, diamond products, 96
Sputtering, etching, 174
Stainless steels
electrolytic polishing and etching, 460–461
specimen preparation, 328–333
Stamping, marking, 80
Standard Operating Procedure (SOP), 670–672
Standards, occupational safety and health, labs, 673
Static hardness testing, 626–643
Brinell hardness testing, 626–628
hardness values conversion, 642–643
hardness values precision, 642
instrumented indentation testing, 641–642
Knoop hardness testing, 633–634
microindentation hardness, 636–639
Rockwell hardness testing, 634–636
universal hardness, 639–642
Vickers hardness testing, 628–632
Step cutting, design principles of wheel, 38–39
Steps, specimen preparation, 219–220
Stereo microscopy, 555–557
Stereology, 565–567
Stones/disks, grinding, 99–100
Storage, 81
Storing
consumable abrasive cut-off wheels, 33–34
slow consumable wheels, 36
Structure, cut-off wheel, 20
Study of failures, selection, sectioning, 14
Super alloys
electrolytic polishing and etching, 461
specimen preparation, 333–335
Surface preparation, 11–13
Suspensions, diamond products, 96
Synthetic grinding fluids-oil-based, 26–27

Teeth, specimen preparation, 427–430
Testing and inspection labs, 651
Thermal damage, wet abrasive cutting,
23–25
clamping, 24–25
wet cutting, 25
Thermal etching, 174
Thermal spray coatings, specimen preparation, 260–265
Thickness measurements, automatic image analysis, 608–610
Thin sections, polishing, 152–154
Tin
electrolytic polishing and etching, 470–471
specimen preparation, 413–416
Tin cubic boron nitride, specimen preparation, 232–235
Tissue, specimen preparation, 427–430
Titanium
electrolytic polishing and etching, 471
specimen preparation, 416–420
Titanium carbide, specimen preparation, 232–235
Titanium nitride, specimen preparation, 232–235
Toxic substances, occupational safety and health, labs, 666
Traditional grinding, 99–106
Traditional versus contemporary methods, specimen preparation, 218
Training, occupational safety and health, labs, 673

Transistors, specimen preparation, 301–305
Transmission electron microscope (TEM), 558
Trouble shooting, specimen preparation, 476–521
True microstructure, 5–6, 6
Truing and dressing
cut-off wheel wear, wet abrasive cutting, 26
slow consumable wheels, 34–35
Tungsten, electrolytic polishing and etching, 472
Tungsten carbide, specimen preparation, 232–235

Ultramilling, polishing, 155
Ultrasonic apparatuses cleaning, 83
Ultrasonic cleaning, 83
Universal hardness, static hardness testing, 639–642
Unplane surface, mechanical damage, wet abrasive cutting, 23
Uranium, specimen preparation, 447–450
Use, slow consumable wheels, 35

Vanadium, electrolytic polishing and etching, 472–473
Vapor deposition, etching, 174
Vickers hardness testing, 628–632
Visible light, light microscopy, 525–526
Volume fraction
automatic image analysis, 602–603
quantitative metallography/materialography, 569

Water-based grinding/polishing fluids, 97
Water-oil based grinding/polishing fluids, 98
Water quality, cutting fluids, wet abrasive cutting, 28
Waterproof ink marking, 80
Watershed filter, automatic image analysis, 590–592
Waviness, mechanical damage, wet abrasive cutting, 23
Wet abrasive cutting, sectioning, 15–32
abrasives and bond materials, 16–21
cut-off grinding process, 15–16
cut-off wheel, 16–21
cut-off wheel wear, 25–26
cutting fluids, 26–29
grinding mechanics, 21–22
mechanical damage, 22–23
metallographic/materialographic cutting operation, 29–32
thermal damage, 23–25
tips, 43–45
Wet cutting, thermal damage, 25
Wheel dimensions
consumable abrasive cut-off wheels, 33
slow consumable wheels, 35
Wheel velocity
consumable abrasive cut-off wheels, 32–33
metallographic/materialographic cutting operation, 30

slow consumable wheels, 35
White cast iron, specimen preparation, 322–324
Wire cutting, 52–53
Wrought aluminum alloys, specimen preparation, 359–361

Y
YBCO ceramic super conductors, specimen preparation, 285–288

Z
Zinc
electrolytic polishing and etching, 473
specimen preparation, 420–423
Zinc oxide, specimen preparation, 241
Zirconia alumina wet grinding paper, 105–106
Zirconium
electrolytic polishing and etching, 474
specimen preparation, 424–427
Zirconium dioxide, specimen preparation, 241