Subject Index

A
- Absorbed dose, 15
- Actinon, 9
- Activated carbon monitors, 4–5, 49, 55–58
 - factors affecting performance, 56–57
 - performance, 57–58
- Active soil depressurization, 114–115, 119–123
 - block wall depressurization, 122
 - crawl space depressurization, 123
 - design, 121–122
 - features, 120–121
 - drain tile depressurization, 122
 - fans, 120
 - installation during construction, 128–129
 - rough-in for, 129
 - submembrane depressurization, 122
 - subslab depressurization, 121–122
 - subslab pressure field extension measurement, 117–118
 - sump hole depressurization, 122
 - subslab depressurization, active soil, 5–7
 - Advection, in soil, 84
- Air
 - outdoor, as indoor radon source, 25
 - physical-chemical interactions, federal research, 155
- Airborne radon, measurement
 - activated carbon monitors, 55–58
 - alpha-track detectors, 54–55
 - continuous monitoring methods, 53
 - continuous scintillation cells, 53
 - diffusion-electrostatic radon monitor, 54
 - diffusion radon only monitor, 54
 - electrets, 58
 - grab sampling, 51–53
 - integrated measurement methods, 54–58
 - ionization chambers, 52
 - liquid scintillation methods, 56
 - pulse ion chamber monitors, 49, 53–54
 - scintillation cells, 51–52
 - solvent extraction method, 52–53
- Air cleaning, 115–116, 127–128
- Alpha activity, total, 12–13
- Alpha particles, detection, 51
- Alpha-track monitor, 49
- Animal studies, lung cancer, 40–41
- Anti-smoking campaign, 140–141
- Appalachian Mountains, radon potential, 90–92
- Appalachian Plateau, radon potential, 92
- ASTM E 1465–92, 6
- Availability, 155

B
- Barometric pressure, effects on soil radon transport transport, 87
- Basement walls
 - concrete block, radon entry, 113
 - poured concrete, radon entry, 114
- Basin and Range province, radon potential, 92
- Bateman equations, 12
- Becquerel, 1, 13
- Blank measurements, 80
- Block wall depressurization, active soil depressurization, 122
- Blower door tests, 119
- Building materials
 - as indoor radon source, 25–26
 - radon from, 113–114
- Buildings
 - depressurization, reducing, 124–125
 - effects on indoor environment, 18–20
 - floor inspection, 117
 - HVAC system evaluation, 118–119
 - interaction with soil, 22
 - investigation, 117
 - measurement, 116–117
 - determining entry routes, 116
 - in water, 117
 - pressure control, 115
 - pressurization
 - with HVAC system, 125–126
 - without HVAC system, 126
 - radon entry, causes, 112–113
 - radon transport into and within, 155
 - review of construction plans, 117
 - sealing entry routes, 123–124
 - tightness measurement, 119

C
- Calibration, 79–80
- California, radon issues, 151
- Canadian Shield, radon potential, 93
- Canister method, soil gas measurement, 61
- Centers for Disease Control, joint health advisory, 149
- Charcoal canister (see Activated carbon monitor)
- Closed accumulation method, 61
- Coastal Plain, radon potential, 89–90
- Columbia Plateau province, radon potential, 92
- Columbia Plateau, radon potential, 93
- Concentration patterns, 4–5, 97–110
 - national and regional perspectives, 97–100
 - state and sub-state perspectives, 99–105
 - see also Florida; Indoor radon; New Jersey
- Conference of Radiation Control Program Directors, results, 143, 145–146
- Continuous monitoring methods, airborne radon measurement, 53
- Continuous monitors, decay products, measurement, 59–60
- Continuous working level meters, 50
- Control strategies, 5–6, 112–132
 - active soil depressurization, 114–115, 119–123
 - air cleaning, 115–116, 127–128
 - building pressure control, 115
 - costs, 129–130
 - entry prevention, 114–115
 - EPA recommendations, 116
 - long-term maintenance of reduction systems, 131
 - new construction
 - prevention in, 128–129
 - promoting radon-resistant, 143
 - standards and codes, 129
 - post-installation testing and inspection, 130–131
 - pressurization
 - with HVAC system, 125–126
 - without HVAC system, 126
 - reducing building depressurization, 124–125
 - removal after entry, 115–116, 126–128
 - removal from water, 128
 - sealing radon entry routes, 114–115, 123–124
 - source removal, 115, 126
 - ventilation, 115, 127
- Convection, in soil, 84
- Cosmic radiation, 15–16
- Costs, control strategies, 129–130
- Crawl space
 - depressurization, active soil depressurization, 123

Copyright©1994 by ASTM International

www.astm.org
D

Daily variations, in radon, 68–71
Decay products, 58–61
air cleaning, 127–128
behavior indoors, 27–29
concentration in mines, 34
deposition in lungs, 35
determination of concentrations, 51
exposure-dose relation, 35
measurement, 4
continuous monitors, 59–60
grab sampling methods, 58–59
integrated sampling methods, 60
standardization activities, 62
radon-222, 16
respiratory dosimetry, 34
unattached (see Unattached fractions)
Diagnosis of problem, 116–119
building investigation, 117
building materials as radon source, 119
building tightness measurement, 119
floor inspection, 117
HVAC system evaluation, 118–119
measurements, 116
in buildings, 116–117
review of building construction plans, 117
subslab pressure field extension measurement, 117–118
Diffusion, in soil, 83
Diffusion barrier charcoal absorber, 56–57
advantages, 57
Diffusion-electrostatic radon monitor, 54
Diffusion radon only monitor, 54
Direct reading instruments, calibration, 80
Dose equivalent, 15
Dosimetry, 34–36
concentration and exposure, 34
indoor, compared to mining environments, 36
respiratory, decay products, 34–36
Drain tile depressurization, active soil depressurization, 122

E

Electret, 49, 58
Entry routes, sealing, 114–115, 123–124
during construction, 129
Environment
natural, 1–2
see also Indoor environment
Equilibrium equivalent concentration, 13, 15
Equilibrium factor, 15
Extraction methods, soil gas, 62

F

Fans, active soil depressurization, 120
Filtered-Cup method, 75
Floor inspection, 117

Florida
geologic profiles and elevated radon potential, 104, 108–109
patterns of indoor radon, soil radon, geologic occurrences, and terrestrial uranium, 104, 110
radon issues, 151
spatial pattern of radon potential, 100, 105
Flow-through accumulation, 61
Flux density, as function of diffusion coefficient in concrete, 26
soil permeability, 22

G

Gas, natural (See Natural gas)
Geographic areas, surveys, 78
Geology, 4–5
Glaciated areas, radon potential, 93
Granular activated carbon treatment unit, 128
Great Plains, radon potential, 92
Great Valley of California, radon potential, 93

Half-life, 1
Half-title, 10
Health effects, 2–3, 33–45
epidemiologic studies, 33
other than lung cancer, 44
see also Lung cancer
Heating, ventilating, and air conditioning systems
building pressurization with, 125–126
designing to prevent radon entry, 129
evaluation, 118–119
types, 19–20
Homebuilders, effect of policies and media activities, 153
Hourly variations, in radon, 68–71
Houses
measurement strategies, 72–77
DOE protocols, 74–76
EPA protocols, 76–77
need for universal testing, 136–137
temporal and spatial variations of radon, 68–74

I

Illuviation, 85
Indoor radon
building factors, 18–20
concentration distribution, 20–21
decay product behavior, 27–29
dosimetry, compared to mines, 36
entry rate, 23
historical overview, 3
model for pollutant concentrations, 17–18
predictors of, 100–104, 106–110
foundation type, 100, 106
soil concentrations, 104, 106–110
radon-222 sources and concentrations, 26–27
screening measurement, by state and region, 5–6
sources, 21–26
building materials, 25–26
natural gas, 26
outdoor air, 25
soil, 21–23
water, 23–25
variations in radon and environmental parameters, 23–24
Indoor Radon Abatement Act of 1988, 7, 134
Integrated measurement methods
airborne radon measurement, 54–58
decay products, measurement, 60
International Commission on Radiological Protection, risk assessment model, 42–43
Ionization chambers, 52
Ionizing radiation, sources, 1–2

K

K factor, 36
Known samples, 80
Kodak-Pathe technique, 75

L

Leaching, 85
Legislation, 6–7
Liquid scintillation methods, 56
Lucas cells (see Scintillation cells)
Lung cancer, 33
animal studies, 40–41
epidemiological studies, 36–40
general population, 38–40
miners, 37–38
future rates, 154
mechanisms of induction, 156
mortality rates, 42–43
most common types, 36
risk, 1, 33, 135–136
federal research, 156
risk assessment, 41–44
Risk coefficients, selection, excess lung cancer risk, 42
smoking and, 36–37

M

Mass-balance equation, time-dependent, 17–18
Measurement, 49–63
activated carbon monitor, 49
alpha-track monitor, 49
continuous working level meters, 50
electret, 49
errors, 70–72
methods and instrumentation, 3–4
airborne radon, 52
calibration, 79–80
performance and background checks, 80
selection, 50
principles, 51
protocols, 4, 67–81
blank measurements, 80
calibration, 79–80
DOE, in houses, 74–76
duration and season of measurement, 67
P

Pacific Coast Ranges, radon potential, 92–93
Passive radon measurement detector systems, calibration, 80
Passive soil depressurization, in new construction, 129
Picocurie, 1
Policy
current, 148–149
population-risk versus individual-risk, 154
versus science, 153–155
Pollutants, model for indoor concentrations, 17–18
Polyvinyl chloride pipes, active soil depressurization, 120
Potential alpha energy concentration, 13
Pressure, difference between indoors and outdoors, 18
Pressure coefficient, 19
Pressure field extension, 118
Prompt Alpha-Track method, 75
Properties, 9
Public, reaction to policies and activities, 149–150
Publications, currently available, EPA, 144
Public information programs, 143
Pulmonary function, abnormalities, radium miners, 44
Pulse ion chamber monitors, 49, 53–54
Pulse-type ionization chambers, 52

Q

Quality assurance, protocols, 78–80
Quality factory, 15

R

Radiation
average background, 15–17
man-made sources, 16
natural sources, 15–16
Radioactive decay, 10–13
Radio-metric data, rocks and soil, 88–89
Radionuclides
cosmogenic, 15
terrestrially derived, 16
Radium
concentration in rock and soil, 83 in soil, 86
Radon
availability, federal research, 155
current and future perspectives, 7–8, 148–157
importance of, 1
risk communication, 156
Radon-220
decay series, 10–11
relative activity concentration as function of time, 12–13
Radon-222
decay series, 10–11
exposure to decay products, 16
indoor sources and concentrations, 26–27
relative activity concentration as function of time, 12
Radon Action Program, 6–7, 134–146
continuing scientific research, 138
continuum of strategies for solving the problem, 140–142
decentralized system for reaching public, 138–140
developing coordinated research plan, 143
guiding scientific and policy principles, 135–138
health risks in smokers, 137
key elements, 134–135, 144
key priorities, 142–143
lack of known safe level of exposure, 135–136
measurable goals, 140–141
mitigation threshold, 136
program objectives, 148
promotion of radon action during real estate transactions, 143
promotion of radon-resistant new construction, 143
sustaining of public information campaign, 143
targeting of greatest risks first, 142–143
translating principles and policies into radon action, 138
universal testing of homes and schools, 136–137
use of proficient radon measurement and mitigation companies, 136
use of short-term tests, 137–138
Radon flux, measurement, 61–62
Radon gas, adsorption, air cleaning, 128
Radon potential
Appalachian Mountains, 90–92
Appalachian Plateau, 92
Bassin and Range province, 92
Canadian Shield, 93
Coastal Plain, 89–90
Colorado Plateau province, 92
Columbia Plateau, 93
glaciated areas, 93
Great Plains, 92
Great Valley, 93
mobility principles application, 84
Pacific Coast Ranges, 92–93
Rocky Mountains, 92
Sierra Nevada, 92
Radon progeny, federal research, 155–156
Radon progeny integrating sampling unit, 50, 60, 74–75
Radon transport
diffusion-driven, 113
federal research, 155
mechanisms, 113–114
pressure-driven, 112–113
Real estate industry, effect of policies and media activities, 153
Real estate transactions, radon action during, 143
Replicate measurements, 80
Risk projection models, 41–44
Rocks
radio-metric data, 88–89
radium concentration, 83
Rocky Mountains, radon potential, 92
Room model, 27–28

S

Sampling errors, 70–72
Saskatchewan seat belt program, 141
Schools
measurement strategies, 77–78
need for universal testing, 136–137
temporal and spatial variations in radon, 69–70
Science, versus policy, 153–155
Scientific research, 138
federal, 155–156
Scintillation cells, 49, 51–52
calibration, 80
continuous, 53
Sealants, recommended, 123–124
Sealing radon entry routes, 114–115, 123–124
during construction, 129
Seasonal variations, in radon, 68, 72–73
Seat belt program, 141
Sierra Nevada, radon potential, 92
Slabs, sealing, 124
Smokers
lung cancer risk, 1, 36–37
Soil
characteristics, 84–86
as indoor radon source, 21–23
interaction with buildings, 22
pressure and flow fields, 22
radiochemical composition, 9–10
radiometric data, 88–89
radium concentration, 83
radon emanation, 83
radon measurement, 50
radon mobility, 83–84
radon transport
barometric pressure and wind effects, 86–87
precipitation and soil moisture effects, 86–87
pressure-driven, 112–113
temperature effects, 87
structure, texture, and permeability, 84–85
uranium mineralogy and occurrence, 87–88
weathering processes and products, 85–86
Soil gas, measurement, 61–62
Solid state nuclear track detector, 54
Solvent extraction method, 52–53
Source removal, 115, 126
Spatial variations, in radon, 69, 73–74
Stack effect, 18–19, 112, 121
States, concentration patterns, 97–100
Stomach cancer, in miners, 44
Submembrane depressurization, active soil depressurization, 122–123
Subslab depressurization, active soil depressurization, 119–120, 121–122
Sump hole depressurization, active soil depressurization, 122
Superfund Amendments and Reauthorization Act of 1986, 7
T
Temperature, effects on soil radon transport, 87
Terrestrial radioactivity, 15–16
Thorium-232, decay series, 9–10
Thoron, 9
Total alpha activity, 12–13
Tsivoglou method, 59
Unattached fraction, 15
as determinant of dose received, 35
measurement, 60–61
Uranium
mineralogy and occurrence, 87–88
radioactive decay, 86
Uranium-238, decay series, 9–10
United States, concentration patterns, 97–100
U. S. Department of Energy
measurement protocols, 70–71
Office of Health and Environment, research program, 7
protocols, measurement strategies in houses, 74–76
U. S. Environmental Protection Agency currently available publications, 144
joint health advisory, 149
measurement protocols, 71
protocols, measurement strategies in houses, 76–77
Radon Action Program (see Radon Action Program)
risk assessment model, 43
V
Ventilation, 18, 115, 127
forced-air, 127
natural, 127
rates, 19
Ventilators, heat recovery, 127
W
Walls
below-grade, sealing, 124
inspection, 117
Water
aeration, 128
as indoor radon source, 23–25, 113
radon measurement, 62
radon removal, 116, 128
Weathering, of soils, 85–86
Wind
effects, 121
on soil radon transport, 87
interaction with building walls and roof, 18–19
Working level month, 15
Workplaces, measurement strategies, 78