You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Chapter 6-Hydrogen Isotope Effects

    Published: Jan 2001

      Format Pages Price  
    PDF (244K) 8 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    It is well established that small amounts of internal hydrogen produce embrittlement and cracking of ferritic and high-strength martensitic steels. Hydrogen has a large solubility in molten steel, and copious quantities of the gas can be absorbed in the liquid during the steel-making process and retained over and above the equilibrium solubility during subsequent solidification. The hydrogen exerts a high internal pressure and, aided by transformation and thermal contraction stresses, produces defects in ingots and castings and hairline cracking in large forgings and heavy-section steel plates. These deleterious effects have long been recognized, and it is now the practice to remove the hydrogen by vacuum melting and pouring, cooling very slowly, and/or holding of semi-finished or finished products for prolonged periods at high temperatures to allow the hydrogen to diffuse out of the steel. However, embrittlement and cracking may also be produced as a result of hydrogen pick-up during secondary fabrication (acid pickling, welding, cadmium and zinc plating operations, cathodic protection procedures, etc.) and service [electrolytic reactions, corrosion in acids and aqueous solutions, and exposure to high-pressure hydrogen gas at ambient and elevated temperatures and to sour (H2S-containing) gases and liquids].

    Committee/Subcommittee: E10.02

    DOI: 10.1520/MONO10021M