You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 48, Issue 6 (November 2020)

    Shear Moduli of Metal Specimens Using Resonant Column Tests

    (Received 17 February 2018; accepted 7 September 2018)

    Published Online: 2020

    CODEN: JTEVAB

      Format Pages Price  
    PDF (879.36 KB) 11 $25   ADD TO CART

    Cite this document

    X Add email address send
    X
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word



    Abstract

    The shear moduli of cylindrical metal specimens were determined by performing resonant column tests in a torsional mode of vibration. The tests were performed on four different metals, namely (i) aluminum, (ii) brass, (iii) copper, and (iv) mild steel. Keeping the length (L) of the specimens the same, different diameters (d) were chosen to vary the torsional stiffness and, thereby, the resonant frequency. Additional circular plates were attached to the top of the drive mechanism to have different resonant frequencies with the same torsional stiffness (KT). The shear moduli (G) were established by two different methods, namely (i) from the evaluation of KT and (ii) by first determining the mass moment of inertia (Jd) of the drive mechanism and then finding G from the measured circular resonant frequency (ωn). Both the methods provide exactly the same answer(s). For aluminum and brass, the measurement of the shear modulus was found to be much more accurate; the maximum variation of the shear modulus with diameter (8–12 mm/15 mm) for the same driving input voltage (torque) was around 3.3 % for aluminum and 1.2 % for brass. On the other hand, in the case of mild steel and copper, the variation of shear modulus was around 9.2 % and 7.2 %, respectively. The measured values of the shear moduli were found to compare well with the data reported from literature for the different chosen metals.

    Author Information:

    Kumar, Jyant
    Civil Engineering Department, Indian Institute of Science, Bengaluru,

    Shinde, Ninad Sanjeev
    Civil Engineering Department, Indian Institute of Science, Bengaluru,


    Stock #: JTE20180125

    ISSN:0090-3973

    DOI: 10.1520/JTE20180125

    Author
    Title Shear Moduli of Metal Specimens Using Resonant Column Tests
    Symposium ,
    Committee B07