You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 46, Issue 3 (May 2018)

    Enhanced Artificial Bee Colony Algorithm for Liver Cancer Analysis

    (Received 8 August 2016; accepted 13 February 2017)

    Published Online: 2017


      Format Pages Price  
    PDF (868.35 KB) 14 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    During the development of computer technology, computer-aided diagnosis (CAD) technology, used in quantitative analysis of medical imaging, arose at a historic moment and became a research hotspot in medical imaging. Discrimination of hepatocellular carcinoma (HCC) in the liver is a challenge in the histopathologic diagnostics. For this reason, there is an urgent need for new detection methods to improve the accuracy of the diagnosis of liver cancer. Traditional machine-learning approaches are neural network (NN)-based. Cost-sensitive learning and a support vector machine (SVM) is observed to provide a good result in the case of balanced data sets; however, it is not capable of dealing with the classification of imbalanced data sets. These machine-learning approaches may be biased toward the majority class, thus producing a poor predictive accuracy over the minority class. In this paper, a novel technique for the purpose of liver cancer cell classification and root liver cancer cell recognition is proposed. The objective is to automatically categorize several classes of liver cancer cells and to discover the root cancer cell. To solve this problem, initially, preprocessing on noisy imbalanced data sets is carried out by means of improved weighted synthetic minority oversampling technique (IWSMOTE)-based oversampling and evolutionary undersampling. An ensemble-based learning algorithm (DataBoost.IM) with SVM is employed for final classification to classify the cancer cells and non-cancer cells. Finally, the enhanced artificial bee colony (EABC) clustering is applied to discover the root cancer cell. The proposed EABC clustering approach is tested using the liver cancer cell data set, providing an accuracy level of 96.15 %, which is 95.61 % and 92.80 % higher than the ant colony optimization (ACO) and artificial bee colony (ABC) algorithms, respectively.

    Author Information:

    Lokanayaki, K.
    Spurathy College of Science and Management Studies, Bangalore, Karnataka

    Malathi, A.
    Government Arts College, Coimbatore, Tamil Nadu

    Stock #: JTE20160411


    DOI: 10.1520/JTE20160411

    Title Enhanced Artificial Bee Colony Algorithm for Liver Cancer Analysis
    Symposium ,
    Committee D18