You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 45, Issue 4 (July 2017)

    Effect of Clothing Layers on Mass Transfer of Methyl Salicylate Vapor Through CBRN Materials in a Cylinder Test

    (Received 1 December 2015; accepted 18 April 2016)

    Published Online: 2017

    CODEN: JTEVAB

      Format Pages Price  
    PDF (545.27 KB) 10 $25   ADD TO CART

    Cite this document

    X Add email address send
    X
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word



    Abstract

    The testing of protective clothing materials against chemical and biological (CB) hazards is usually done at either a swatch of fabric or at the systems level. In this paper, a cylinder test method was developed in combination with a MethylSalicylate (MeS) Simulant test (variant to the MIST test) to study the effect of air-permeable and membrane clothing systems and specifically the effects of layering on protection. Three fabrics, material A air permeable absorptive, material B air impermeable, non-absorptive (membrane) and material C air permeable non-absorptive were tested on the cylinder alone and in combinations at 1 m/s and 10 m/s wind speeds. At high wind speeds, the MeS vapor penetrated all three materials and protection factors (PF) were lower than 10. At the lower wind speed much higher protection was found, PF(material A) = 36, PF(material B) = 29, PF(material C) = 2, and material B showed a significant decrease in protection with a leakage added (PF = 2), which did not occur with material A (PF = 29). When materials A and C were combined the combination of any layer to material A increased protection, especially with material A close to the cylinder: PF = 983 with material A twice, and PF = 765 with material C outside and material A inside. With material C on both layers, essentially no protection was obtained (PF = 2) and with material A outside and material C inside PF was 55, slightly higher than material A alone. In conclusion, the cylinder method provided very useful information in the development of protective clothing systems, especially at the lower wind speed of 1 m/s, and may provide a reliable quick and efficient way to obtain information on protection of air permeable absorptive fabrics. The method provides much more realistic data than current standard swatch tests on such materials and is cheaper and faster than a whole system MIST test.


    Author Information:

    Ormond, R. B.
    Textile Protection and Comfort Center, North Carolina State Univ., Raleigh, NC

    DenHartog, E. A.
    Textile Protection and Comfort Center, North Carolina State Univ., Raleigh, NC


    Stock #: JTE20150491

    ISSN:0090-3973

    DOI: 10.1520/JTE20150491

    Author
    Title Effect of Clothing Layers on Mass Transfer of Methyl Salicylate Vapor Through CBRN Materials in a Cylinder Test
    Symposium ,
    Committee F23