You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 26, Issue 5

    A Potential Optical Standard for Resistance Strain Gages

    (Received 23 September 1996; accepted 7 April 1998)

    Published Online: 01 September 1998


      Format Pages Price  
    PDF (416K) 8 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    The laser-based interferometric strain/displacement gage (ISDG) is an optical technique that measures the change in relative distance between two reflective markers on a specimen surface. When the markers are illuminated with a low-power He-Ne laser, interference patterns are formed in space that can be monitored and related to the relative displacement between them. The ISDG has been used in experiments ranging in duration from 10 μs to 1000 h—a dynamic range of eleven orders of magnitude. This noncontacting technique offers some intriguing possibilities for resistance strain gage calibration. It does not have to be compensated for temperature since there is no thermal expansion of the gage. There are no transverse effects since it measures only the strain along the line between the two markers. It can measure biaxial strains if three markers are placed in an orthogonal pattern. With high-speed detectors, the ISDG can have a very high-frequency response. The fringe motions can be tracked by following the maximums or minimums of the patterns so there is no drift in the electronic instrumentation, which makes the ISDG suitable for calibration of gages used to measure creep strain.

    This paper presents a brief overview of the ISDG and discusses application areas where it may be useful in evaluating the performance of resistance strain gages. The two applications where it is most likely to be useful are when elastoplastic strains are measured in regions of high gradients or when the strain is dynamic and elastoplastic.

    Author Information:

    Sharpe, WN
    Johns Hopkins University, Baltimore, MD

    Stock #: JTE12030J


    DOI: 10.1520/JTE12030J

    Title A Potential Optical Standard for Resistance Strain Gages
    Symposium ,
    Committee E28