You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 26, Issue 4 (July 1998)

    Pin-on-Disk Corrosion-Wear Test

    (Received 25 July 1996; accepted 26 February 1998)

    Published Online: 01 July 1998


      Format Pages Price  
    PDF (3.1M) 6 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    An electrochemical pin-on-disk corrosion-wear apparatus was developed at the Albany Research Center of the U.S. Department of Energy. The instrument was qualified on a low-alloy T1 tool steel [ASTM A 514] and a 304 stainless steel (Type 304). The apparatus incorporates simple specimen and counterface geometry and is instrumented for simultaneous corrosion and wear testing. The electrochemical and wear parameters of potential, current, charge, sliding speed, frictional force, and normal acceleration can be continuously displayed and recorded. After a break-in period, the electrochemical pin-on-disk produced constant wear rates independent of path length for both ASTM A 514 steel and 304 stainless steel. Results for 304 stainless steel in sulfate solutions show that abrasive wear causes the corrosion potential to shift by 0.4 V in the active direction and the passive current density to increase by three orders of magnitude, compound with the condition of no wear. Current density was a linear function of the sliding speed at a constant applied anodic potential. The open circuit corrosion potential exhibits a decay function behavior with respect to the sliding speed. Volume loss and corrosion measurements showed that mechanical removal of material was responsible for 95% of the corrosion-wear losses for 304 stainless steel. Continual corrosion exposure, however, increased the mechanical removal of material by 35 to 48%.

    Author Information:

    Friedersdorf, FJ
    Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA

    Holcomb, GR
    Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA

    Stock #: JTE12013J


    DOI: 10.1520/JTE12013J

    Title Pin-on-Disk Corrosion-Wear Test
    Symposium ,
    Committee G02