You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 21, Issue 3 (May 1993)

    Axial-Torsional Fatigue: A Study of Tubular Specimen Thickness Effects

    (Received 5 December 1991; accepted 7 November 1992)

    Published Online: 01 May 1993


      Format Pages Price  
    PDF (680K) 8 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    A room-temperature experimental program was conducted on AISI type 316 stainless steel to determine the effect of wall thickness on the cyclic deformation behavior and fatigue life of thinwall, tubular, axial-torsional fatigue specimens. The following experimental variables were examined in this study: the depth of the surface work-hardened layer produced in specimen machining, and the effects of strain range and axial-torsional strain phassing. Tubular fatigue specimens were fabricated with wall thicknesses of 1.5, 2.0, and 2.5 mm. One as-fabricated specimen from each wall thickness was sectioned for microstructural examination and microhardness measurement. A specimen of each wall thickness was tested at each of three conditions—high strain range in-phase, low strain range inphase, and low strain range out-of-phase—for a total of nine axialtorsional fatigue experiments. Little or no variation in the fatigue life or deformation behavior as a function of wall thickness was observed. The machining-induced work-hardened zone, as a percentage of the gage section material, was found to have a minimal effect on both deformation behavior and fatigue life. Out-of-phase fatigue tests displayed shorter fatigue lives and more cyclic hardening than in-phase tests.

    Author Information:

    Bonacuse, PJ
    Research engineer, U.S. Army Research Laboratory, Vehicle Propulsion Directorase, NASA Lewis Research Center, Cleveland, OH

    Kalluri, S
    Senior research engineer, Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, OH

    Stock #: JTE11765J


    DOI: 10.1520/JTE11765J

    Title Axial-Torsional Fatigue: A Study of Tubular Specimen Thickness Effects
    Symposium ,
    Committee E08