You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 11, Issue 5 (September 1983)

    A Constant Amplitude Fatigue Study of an Aluminum Powder Metallurgy Alloy

    Published Online: 01 September 1983


      Format Pages Price  
    PDF (260K) 7 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Three test conditions were chosen to conduct multiple constant amplitude fatigue tests on a powder metallurgy (P/M) aluminum alloy. These test conditions were chosen to produce mean target fatigue lives near 1, 50, and 200 kilocycles. A statistical rule was used to select specimens for fractographic examination. Two product forms, a forging and an extrusion, were tested in both the L and L-T orientation. The forging has approximately an 8% lower yield strength and a 20% higher reduction in area than the extrusion. At the 1-kilocycle target fatigue life, the more ductile forging has a statistically better fatigue performance. Beyond 10 kilocycles, the higher strength extrusion appears to have a longer life, although this was not statistically verified. It is suspected this is because of the increased variance at these longer fatigue lives. Further testing is required to verify this point. Additional testing of the extrusion showed that if the data are fitted to a Weibull model, the P/M extrusion has a vastly different failure rate than reported for ingot metallurgy (I/M) products. A decreasing failure rate for the P/M extrusion was verified with a nonparametric test. The difference in failure rates may be related to the finer grain size and constituent particle size found in P/M aluminum products. Additional study is needed to verify this hypothesis.

    Author Information:

    Santner, JS
    technical specialist, Arco Metals Co., Arlington Heights, IL

    Campbell, G
    Senior staff fellow, Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD

    Stock #: JTE10692J


    DOI: 10.1520/JTE10692J

    Title A Constant Amplitude Fatigue Study of an Aluminum Powder Metallurgy Alloy
    Symposium ,
    Committee D30