You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 3, Issue 1 (January 2006)

    Modelling the Redistribution of Residual Stresses at Elevated Temperature in Components

    (Received 15 April 2005; accepted 22 June 2005)

    Published Online: 00 January 2006


      Format Pages Price  
    PDF (608K) 15 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    In this study the effects of high temperature relaxation on the residual stresses has been examined for T-plate and tubular T-joint geometries by numerical analysis using elasto-plastic-creep finite element modelling. It is shown that residual stresses are important, especially at the early stages of lifetime before the residual stresses relax rapidly. A sensitivity analysis was carried out by varying the creep properties and geometric constraint under plane stress and plane strain conditions. A comprehensive residual stress profile derived from measured residual stresses of a range of steels and different geometries that have been welded, cold bent, repair welded, or overloaded, was used as a ‘Master curve’ of the residual stresses. In all cases compared, it has been shown that the transverse measured residual stresses were tensile at the surface The stress intensity factor (SIF) estimates using the master curve profile for the T-Plate, and tubular T-joint geometries are lower compared to current case specific residual stress profiles used in R6 and BS7910 procedures but is still sufficiently conservative when compared with experimental measured residual stress data. It has also been shown that the numerically calculated residual stresses induced by overload in this study compare well at the surface with the master curve but decrease more rapidly with respect to crack depth compared to experimental values. Furthermore, by considering creep stress relaxation rates from the present FE calculations, it is shown that the peak surface residual stresses drop rapidly to about 50% at the relatively short duration of the first 1000 h. The SIF values of the predicted residual stresses are found to be lower than the experimentally measured data, and they are also found to be insensitive to stress relaxation in the through depth of the T-plate and tubular T-joint geometries. It was shown that the master curve gives an overall conservative SIF, though reduced, for the weld residual stresses as well as for residual stresses derived from overload. Furthermore, where redistribution of the residual stresses is concerned, it is shown that present profiles may all be unduly conservative in their SIF estimations.

    Author Information:

    Lee, H-Y
    Korea Atomic Energy Research Institute, Daejeon,

    Nikbin, KM
    Imperial College London, South Kensington Campus, London,

    Stock #: JAI13411


    DOI: 10.1520/JAI13411

    Title Modelling the Redistribution of Residual Stresses at Elevated Temperature in Components
    Symposium ,
    Committee E08