You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 1, Issue 8 (September 2004)

    The Prediction of Fatigue Life Distributions from the Analysis of Plain Specimen Data

    (Received 11 December 2002; accepted 24 February 2004)

    Published Online: 30 August 2004


      Format Pages Price  
    PDF (412K) 14 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    For any structurally critical component subject to fatigue, the safety of the structure depends on an accurate prediction of the life under this failure mode. However, in such circumstances it is insufficient to consider only the mean behavior of the material. To ensure structural integrity, a model for the distribution of life to failure is required, which will allow lives to be assessed relative to acceptable safety levels.

    In previous work, a methodology for deriving fatigue life estimates for arbitrary specimen and component geometries from plain specimen data has been developed [4]. The methodology is based on a procedure for developing a model for the initiation behavior of the material from the specimen data and for applying this to an arbitrary material geometry or stress field. In the current paper, this method is further developed to allow for the associated distribution of fatigue lives to be calculated. This involves direct consideration of the statistical relationship between crack initiation and crack propagation, so that the distribution of initiation lives can be derived accurately. However, incorporating these considerations directly into the methodology reveals some inconsistencies in the formulation of the original model. These relate to the fact that, at high stresses, the specimens will fail in tension rather than classical fracture, thus altering the interpretation of the data. It is shown that a more robust model can be developed, but only by including the distribution of tensile strength as an additional variable, and by considering the statistical relationship between this and the other fundamental variables.

    The methodology which arises from the incorporation of these considerations into the basic calculation scheme is then developed, including a means for estimating the distribution of life to failure at all points on the stress against cyclic life curve.

    Author Information:

    Shepherd, DP
    Senior Mathematician, Airworthiness and Structural Integrity Group, QinetiQ Ltd, Farnborough, Hants

    Stock #: JAI11553


    DOI: 10.1520/JAI11553

    Title The Prediction of Fatigue Life Distributions from the Analysis of Plain Specimen Data
    Symposium ,
    Committee E08