You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    Volume 8, Issue 8 (September 2011)

    The Effects of Dwell on the LCF Behavior of IN617

    (Received 30 November 2010; accepted 13 June 2011)

    Published Online: 25 July 2011


      Format Pages Price  
    PDF (3.2M) 11 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Much has been studied on the individual effects of creep and fatigue on alloy life. However, not much is known of the combined effects of these two mechanisms. Therefore, a study was put into place to determine the effects of dwell on fatigue life and deformation mechanisms, for IN617, a solid-solution strengthened Ni-base alloy used widely in the power generation and aerospace industries. Low cycle fatigue (LCF) tests were conducted from 649–982°C with either tensile or compressive dwell. Fracture surfaces of the test specimens as well as longitudinal and transverse sections were examined via scanning electron microscopy to determine the damage and failure mechanisms. Test results confirmed tensile dwell lives that were significantly lower than those seen in compressive dwell. The mechanics for the reduction in cyclic life for tensile dwell was attributed to creep damage accumulation at grain boundaries that led to widespread intergranular cracking and failure. Tensile dwell life reductions were largest in tests at moderate (649–760°C) temperatures. The failed specimens for this temperature range showed the most evidence of grain boundary cavitation and intergranular cracking. At higher test temperatures, the tensile dwell sensitivity for IN617 was significantly reduced or almost entirely eliminated at high temperatures (871–982°C). This was attributed to the lower stresses that developed at these temperatures for a given strain range. The LCF testing and subsequent analysis indicated that a substantial tensile stress during dwell time coupled with moderate temperatures, to allow for diffusion creep, lead to grain boundary damage that can reduce cyclic life.

    Author Information:

    Shinde, Sachin
    Siemens Energy Inc.,

    Gravett, Philip
    Siemens Energy Inc.,

    Stock #: JAI103617


    DOI: 10.1520/JAI103617

    Title The Effects of Dwell on the LCF Behavior of IN617
    Symposium ,
    Committee E08