You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 5, Issue 7 (July 2008)

    An Examination of Fatigue Initiation Mechanisms in Thin 35Co-35Ni-20Cr-10Mo Medical Grade Wires

    (Received 14 November 2007; accepted 10 June 2008)

    Published Online: 2008


      Format Pages Price  
    PDF 10 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Knowledge of the intrinsic defect size distribution, surface grain size distribution, and prior deformation history are important factors in determining fatigue crack initiation mechanisms and total life variability in thin, metallic, medical grade wires. The ASTM F562 alloy system is used extensively as a fine wire coil or cable in the production of cardiac rhythm management leads which require excellent fatigue life, and a good understanding of life variability. In the present investigation, samples of 0.0070 in. diameter ASTM F562, 35Co-35Ni-20Cr-10Mo wires were produced with a variety of grain sizes and strain hardening conditions. Samples were then cyclically loaded to failure in rotary beam testing and preserved for post mortem fractography using high resolution scanning electron microscopy (HR-SEM). Fatigue cracks were found to initiate from three sources: intrinsic microstructural inhomogeneities, persistent slip bands (PSBs), and extrinsic surface defects. The dominance of the various initiation mechanisms was shown to be a function of the constituent particle and grain size as well as the fatigue loading conditions and prior deformation history. In samples exhibiting a surface grain size significantly larger than the constitutive particle distribution, cracks were observed to preferentially nucleate from surface intersecting PSBs rather than near-surface-particles. Understanding of these phenomena is important in the design of robust cardiac lead systems that will outlive the patient.

    Author Information:

    Schaffer, Jeremy E.
    Fort Wayne Metals Research Products CorporationPurdue University, Fort WayneWest Lafayette, ININ

    Stock #: JAI101567

    ISSN: 1546-962X

    DOI: 10.1520/JAI101567

    Title An Examination of Fatigue Initiation Mechanisms in Thin 35Co-35Ni-20Cr-10Mo Medical Grade Wires
    Symposium Seventh International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics (36th ASTM National Symposium on Fatigue and Fracture Mechanics), 2007-11-16
    Committee E08