Index to Volume 3
1980

Number	Month of Issue	Pages
1 | March | 1-48
2 | June | 49-96
3 | September | 97-144
4 | December | 145-180

A-C
Allam, M. M. and Sridharan, A.: Influence of the back pressure technique on the shear strength of soils, March, 35
Allen, D. L. and Deen, R. C.: Modulus and damping of asphaltic concrete using the resonant column, Dec., 16
Amplifiers: Modern electronics for geotechnical engineers: Part 2, operational amplifier (Moore), March, 13
Apparatus: Soil stress gage calibrations (Selig), Dec., 153
Austin, G.: see Brown, S. F., Austin, G., and Overy, R. F.
Brown, S. F., Austin, G., and Overy, R. F.: An instrumented triaxial cell for cyclic loading of clays, Dec., 145
Burns, S. D.: see Lasca, N. P., Burns, S. C., and Gajkowski, W. A.
Calibrations
New method for the calibration of the inertia of resonant column devices (Tatson and Silver), March, 30
Soil stress gage calibrations (Selig), Dec., 153
Cernica, J. N.: Proposed new method for the determination of density of soil in place, Sept., 120
Chaney, R. C., Stevens, E., Sheth, N., and Henney, E.: Effect of stress concentrations on the cyclic behavior of sands, Sept., 97
Clays
Influence of the back pressure technique on the shear strength of soils (Allam and Sridharan), March, 35
Testing for evaluation of stress-strain behavior of clays (Yudhbir and Jain), March, 18
Damping: Modulus and damping of asphaltic concrete using the resonant column (Allen and Deen), Dec., 167
Deen, R. C.: see Allen, D. L. and Deen, R. C.
Dhowian, A. W. and Edil, T. B.: Consolidation behavior of peats, Sept., 105
Digital logic circuits: Modern electronics for geotechnical engineers: Part 5, digital logic circuits (Moore), Dec., 145
Dredged shear tests: Testing for evaluation of stress-strain behavior of clays (Yudhbir and Jain), March, 18
Drills: What constitutes a turn? (Kovacs), Sept., 127
Eccentric loading: The uniaxial strength of rock material (Wijk), Sept., 115
Edil, T. B.: see Dhowian, A. W. and Edil, T. B.
Eluchens, G. R.: Suggested method for trimming undisturbed samples, Sept., 131
Energy: An experimental investigation of the force-penetration relationships of rod impact (Steiger), Dec., 163
Equipment: Modern electronics for geotechnical engineers: Part 1, introduction to integrated circuits (Moore), March, 9
Fatigue (mechanical): Blast vibration implications of cyclic shear behavior of model plaster panels (Dowding, Beck, and Atmatzidis), June, 80
Field density: Proposed new method for the determination of density of soil in place (Cernica), Sept., 120
Field tests: What constitutes a turn? (Kovacs), Sept., 127
G-L
Gajkowski, W. A.: see Lasca, N. P., Burns, S. C., and Gajkowski, W. A.
Henney, E.: see Chaney, R. C., Stevens, E., Sheth, N., and Henney, E.
Holz, R. D.: SI units in geotechnical engineering, June, 73
Homogeneity: Effect of stress concentrations on the cyclic behavior of sands (Chaney, Stevens, Sheth, and Henney), Sept., 97
Ice: A data acquisition system for testing the mechanical properties of ice (Lasca, Burns, and Gajkowski), March, 3
Conclusions: Consolidation behavior of peats (Dhowian and Edil), Sept., 105
Containers: Soil stress gage calibrations (Selig), Dec., 153
Cracking: Blast vibration implications of cyclic shear behavior of model plaster panels (Dowding, Beck, and Atmatzidis), June, 80

Impact tests: Sclerograph measurements on rock materials (Wijk), June, 49
Instrumentation
Modern electronics for geotechnical engineers: Part 1, introduction to integrated circuits (Moore), March, 9
Modern electronics for geotechnical engineers: Part 2, operational amplifiers (Moore), March, 13
Modern electronics for geotechnical engineers: Part 3, voltage comparators (Moore), June, 66
Modern electronics for geotechnical engineers: Part 4, waveform generators (Moore), June, 69
Modern electronics for geotechnical engineers: Part 5, digital logic circuits (Moore), Dec., 124
Modern electronics for geotechnical engineers: Part 6, process control applications (Moore), Dec., 159
Jain, K. K.: see Yudhbir and Jain, K. K.
Kovacs, W. D.: What constitutes a turn?, Sept., 127
Laboratory equipment
Modern electronics for geotechnical engineers: Part 1, introduction to integrated circuits (Moore), March, 9
Modern electronics for geotechnical engineers: Part 2, operational amplifiers (Moore), March, 13
Modern electronics for geotechnical engineers: Part 3, voltage comparators (Moore), June, 66
Modern electronics for geotechnical engineers: Part 4, waveform generators (Moore), June, 69
Modern electronics for geotechnical engineers: Part 5, digital logic circuits (Moore), Dec., 124
Modern electronics for geotechnical engineers: Part 6, process control applications (Moore), Dec., 159
Lasca, N. P., Burns, S. D., and Gajkowski, W. A.: A data acquisition system for testing the mechanical properties of ice, March, 3
Liquefaction: Effect of stress concentrations on the cyclic behavior of sands (Chaney, Stevens, Sheth, and Henney), Sept., 97
Loads: The point load test for the tensile strength of rock (Wijk), June, 49

M-Q
Measuring instruments: A data acquisition system for testing the mechanical properties of ice (Lasca, Burns, and Gajkowski), March, 3
Metric system: SI units in geotechnical engineering (Holz), June, 73
Microstructures: Consolidation behavior of peats (Dhowian and Edil), Sept., 105
Moore, C. A.
Modern electronics for geotechnical engineers: Part 1, introduction to integrated circuits, March, 9

Copyright © 1981 by ASTM International
www.astm.org
Modern electronics for geotechnical engineers: Part 2. operational amplifiers, March, 13
Modern electronics for geotechnical engineers: Part 3. voltage comparators, June, 66
Modern electronics for geotechnical engineers: Part 4. waveform generators, June, 69
Modern electronics for geotechnical engineers: Part 5. digital logic circuits, Sept., 124
Modern electronics for geotechnical engineers: Part 6. process control applications, Dec., 159
Overy, R. F.: see Brown, S. F., Austin, G., and Overy, R. F.
Penetration tests: What constitutes a turn? (Kovacs), Sept., 127
Pore pressures: An instrumented triaxial cell for cyclic loading of clays (Brown, Austin, and Overy), Dec., 145
Pore water pressures: Influence of the back pressure technique on the shear strength of soils (Allam and Sridharan), March, 35
Quality control: Suggested method for trimming undisturbed samples (Eischens), Sept., 131
Sampling: Suggested method for trimming undisturbed samples (Eischens), Sept., 131
Selig, E. T.: Soil stress gage calibration, Dec., 153
Scully, N.: New method for the calibration of the inertia of resonant column devices (Tatsuoka and Silver), March, 30
Shear strength: An experimental investigation of the force/penetration relationships of rod impact (Steiger), Dec., 163
Sheth, N.: see Chaney, R. C., Stevens, E., Sheth, N., and Henney, E.
Silver, M. L.: see Tatsuoka, F. and Silver, M. L.
Sridharan, A.: see Allam, M. M. and Sridharan, A.
Scrieger, F.: An experimental investigation of the force/penetration relationships of rod impact, Dec., 163
Stevens, E.: see Chaney, R. C., Stevens, E., Sheth, N., and Henney, E.
Strain: Blast vibration implications of cyclic shear behavior of model plaster panels (Dowding, Beck, and Atmatzidis), June, 80
Stress concentration: Testing for evaluation of stress-strain behavior of clays (Yudhbir and Jain), March, 18
Symbols: SI units in geotechnical engineering (Holtz), June, 73
Sampling systems: A device for automatic logging of volume change in large scale triaxial tests (Watts), March, 41
Resonance
Modulus and damping of asphaltic concrete using the resonant column (Allen and Deen), Dec., 167
New method for the calibration of the inertia of resonant column devices (Tatsuoka and Silver), March, 30
Rod impact: An experimental investigation of the force/penetration relationships of rod impact (Steiger), Dec., 163
T-Y
Tatsuoka, F. and Silver, M. L.: New method for the calibration of the inertia of resonant column devices, March, 30
Tensile strength
The point load test for the tensile strength of rock (Wijk), June, 49
The uniaxial strength of rock material (Wijk), Sept., 115
Testing machines
The point load test for the tensile strength of rock (Wijk), June, 49
Sclerograph measurements on rock materials (Wijk), June, 55
Triaxial tests
A device for automatic logging of volume change in large scale triaxial tests (Watts), March, 41
An instrumented triaxial cell for cyclic loading of clays (Brown, Austin, and Overy), Dec., 145
Effect of stress concentrations on the cyclic behavior of sands (Chaney, Stevens, Sheth, and Henney), Sept., 97
Undisturbed samples: Suggested method for trimming undisturbed samples (Eischens), Sept., 131
Undrained shear tests: Influence of the back pressure technique on the shear strength of soils (Allam and Sridharan), March, 35
Unit weight: Proposed new method for the determination of density of soil in place (Cernica), Sept., 120
Voltage comparators: Modern electronics for geotechnical engineers: Part 3. voltage comparators (Moore), June, 66
Volume: Proposed new method for the determination of density of soil in place (Cernica), Sept., 120
Watts, K. S.: A device for automatic logging of volume change in large scale triaxial tests, March, 41
Wave velocity: Sclerograph measurements on rock materials (Wijk), June, 55
Waveform generators: Modern electronics for geotechnical engineers: Part 4. waveform generators (Moore), June, 69
Wijk, G.: The point load test for the tensile strength of rock, June, 49
Sclerograph measurements on rock materials, June, 55
The uniaxial strength of rock material, Sept., 115
Young's modulus: Modulus and damping of asphaltic concrete using the resonant column (Allen and Deen), Dec., 167
Yudhbir and Jain, K. K.: Testing for evaluation of stress-strain behavior of clays, March, 18