Geotechnical Testing Journal
Index to Volume 9
1986

<table>
<thead>
<tr>
<th>Number</th>
<th>Month of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March</td>
<td>1-48</td>
</tr>
<tr>
<td>2</td>
<td>June</td>
<td>49-116</td>
</tr>
<tr>
<td>3</td>
<td>September</td>
<td>117-166</td>
</tr>
<tr>
<td>4</td>
<td>December</td>
<td>167-242</td>
</tr>
</tbody>
</table>

Capillary pressures: Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41

Carpenter, G. W. and Stephenson, R. W.: Permeability testing in the triaxial cell, March, 3

Centrifuges
Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49
Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambre), June, 61
A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72

Chemical analysis: The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34

Clays
The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41
A new technique to evaluate evrosity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 67
A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24

Clutch, H. Y., Kurst, P. L., and Vinson, T. S.: Determination of ice forces with centrifuge models, June, 49

Compaction
Characteristic threshold and infrared vibrothermography of sand (Pang), June, 80
Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24

Compressive strength: Development of an erosion test for soil cement (Oswell and Joshi), March, 19

Cone penetrometer: Effect of cementation on the core penetration resistance of sand: a model study (Rad and Tumay), Sept., 117

Crack propagation: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169

Craft, D.: The application of multivariate statistics and saturation extract data to identify dispersive clay soils, March, 34

D
Damping: Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140

Davidson, J. L. and Bloomquist, D. G.: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

Dilatancy: Characteristic threshold and infrared vibrothermography of sand (Luong), June, 80

Dilatometer tests: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93

Direct shear tests: Cyclic simple shear testing of granular materials (Shaw and Brown), Dec., 213

Douville, S.: see Rohan, K., Lefebvre, G., Douville, S., and Milette, J.-P.

Drill holes: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180

Drnevich, V. P.
Editorial, Dec., 167
Editorial, March, 2
50th Anniversary Celebration of Committee D-18, Dec., 226

E
Earth pressure cell: Factors affecting the performance of a pneumatic earth pressure cell (Fello and Bauer), June, 102

Earthquakes: Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambre), June, 61

Edil, T. B.: see Whitman, G. C. and Edil, T. B., Emerson, W. W., and Peter, P.

Erosion: A new technique to evaluate evrosity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 87

Erosion tests: Development of an erosion test for soil cement (Oswell and Joshi), March, 19

Evans, J. C. and Fang, H.-Y.: Triaxial equipment for permeability testing with hazardous and toxic permeants, Sept., 126

F
Fang, H.-Y.: see Evans, J. C. and Fang, H.-Y.

Fello, G. Y. and Bauer, G. E.: Factors affecting the performance of a pneumatic earth pressure cell, June, 102

Fello, G. Y. and Brliaud, J.-L.: Procedure for rod shear test, Sept., 133

Copyright © 1986 by ASTM International
Hazardous wastes: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126

Holz, R. D., II: see Juang, C. H. and Holtz, R. D., II

Howarth, D. F. and Rowlands, J. C.: Development of an index to quantify rock texture for qualitative assessment of intact rock properties, Dec., 169

Hydraulic conductivity: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126

Ice: Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49

In-situ testing
Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38

A new equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

K-L

Kovacs, W. D.: see Amer, M. I., Aggour, M. S., and Kovacs, W. D.

Kurst, P. L.: see Clough, H. F., Kurst, P. L., and Vinson, T. S.

Laboratory testing
Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140

Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 140

Lambe, P. C.: see Whitman, R. V. and Lambe, P. C.

Lefebvre, G.: see Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.

Leonards, G. A.: see Alarcon, A., Chameau, J. L., and Leonards, G. A.

Liquid limits: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147

Liquefaction: Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38

Luong, M. P.: Characteristic threshold and infrared vibrothermography of sand, June, 80

M

Mercury intrusion porosimetry: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154

Millette, J.-P.: see Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.

Model tests: Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61

Montmorillonite: Liquid limit of montmorillonite soils (Sridharan, Rao, and Murthy), Sept., 156

Multivariate statistics: The application of multivariate statistics and saturation test data to identify dispersive clay soils (Craft), March, 38

Murthy, N. S.: see Sridharan, A., Rao, S. M., and Murthy, N. S.

Muster, G. L., II and O'Neill, M. W.: Dynamically loaded pile overconsolidated clay, Dec., 189

N-O

Noncohesive material: Preparation of specimens of noncohesive material for mercury intrusion porosimetry, Sept., 154

O'Neill, M. W.: see Muster, G. L., II and O'Neill, M. W.


Overconsolidated clays: Dynamically loaded pile in overconsolidated clay (Muster and O'Neil), Dec., 189

P

Pang, P. L. R.: A boundary stress transducer for small soil models in the centrifuge, June, 49

Penetration rig: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

Penetration tests: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93

Permeability: Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3

Peter, T. M.: see Armstrong, J. C. and Petry, T. M.

Pile driving: Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

Pile friction: Procedure for a rod shear test (Fello and Briaud), Sept., 133

Plies
Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49

Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

Plastic limits: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147

Pure size distribution: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154

Pressure cells: A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72

Pressures: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93

R

Rad, N. S. and Tumay, M. T.: Effect of cementation on the cone penetration resistance of sand: a model study, Sept., 117


Richards, B. G., Emerson, W. W., and Peter, P.: Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan, March, 41

Robertson, P. K. and Campanella, R. G.: Estimating liquefaction potential of sands using the flat plate dilatometer, March, 38

Rock texture: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169

Rocks: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), 169

Roden test: Procedure for a rod shear test (Fello and Briaud), Sept., 133

Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.: A new technique to evaluate erosivity of cohesive material, June, 87

Rowlands, J. C.: see Howarth, D. F. and Rowlands, J. C.

S

Sands
Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117

Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38

Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10

A new apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204

Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140

Schmertmann, J. H.: Suggested method for performing the flat dilatometer test (ASTM Subcommittee D15.02), June, 93

Shaw, P. and Brown, S. F.: Cyclic simple...
shear testing of granular materials, Dec., 213
Shear apparatus: Cyclic simple shear testing of granular materials (Shaw and Brown), Dec., 213
Shear stress: Cyclic simple shear testing at granular materials (Shaw and Brown), Dec., 213
Shear tests: Procedure for a rod shear test (Fe-lio and Briaud), Sept., 133
Shockley, W. G.
Comments from the chairman of Committee D-18, Dec., 226
Update of the History of ASTM Committee D-18, Dec., 226
Sivapullalah, P. V.; see Sridharan, A., Rao, A. S., and Sivapullalah, P. V.
Soil cement: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
Soil mechanics: A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72
Soil tests: Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3
Soils
The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
Discussion of “Evaluation of Soil Suction Components” by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41
Liquid limit of montmorillonite soils (Sridharan, Rao, and Murthy), Sept., 156
A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
Sridharan, A., Rao, S. M., and Murthy, N. S.
Liquid limit of montmorillonite soil, Sept., 156
A rapid method to identify clay type in soils by the free-swell technique, Dec., 198
Sridharan, A., Rao, A. S., and Sivapullalah, P. V.
Swelling pressure of clays, March, 24
Stephenson, R. W., see Carpenter, G. W. and Stephenson, R. W.
Standard penetration test: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
Stress: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102
Stress-strain curves: Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10
Swelling: Swelling pressure of clays (Sridharan, Rao, and Sivapullalah), March, 24
Swelling index: A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
T
Test procedures: A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Millette), June, 87
Thawed soils: Discussion of “Repeated Load Triaxial Testing of Frozen and Thawed Soils” by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221
Torsion shear tests: A rapid apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, Leonards), Dec., 204
Torsional shear apparatus: A new apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204
Triaxial tests
Characteristic threshold and infrared vi-brothermography of sand (Luong), June, 80
Discussion of “Repeated Load Triaxial Testing of Frozen and Thawed Soils” by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221
Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10
Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3
Tumay, M. T.; see Rad, N. S. and Tumay, M. T.

V
Vinson, T. S.; see Clough, H. F., Kurst, P. L., and Vinson, T. S.

W-Z
Whited, G. C. and Edil, T. B.: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
Whitman, R. V. and Lambe, P. C.: Effect of boundary conditions upon centrifuge experiments using ground motion simulation, June, 61