Geotechnical Testing Journal
Index to Volume 10
1987

<table>
<thead>
<tr>
<th>Number</th>
<th>Month of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March</td>
<td>1-40</td>
</tr>
<tr>
<td>2</td>
<td>June</td>
<td>41-96</td>
</tr>
<tr>
<td>3</td>
<td>September</td>
<td>97-164</td>
</tr>
<tr>
<td>4</td>
<td>December</td>
<td>165-244</td>
</tr>
</tbody>
</table>

C


Carter, J. P.: see Ooi, L. H. and Carter, K. P.

Cavities: Cavity expansion tests in a hollow cylinder cell (Juran and BenSaid), Dec., 203

Cavity expansion: Cavity expansion tests in a hollow cylinder cell (Juran and BenSaid), Dec., 203

Clays

Differential flow patterns through compacted clays (Peirce, Sallfors, and Ford), Dec., 218

Liquid and plastic limits as determined from the fall cone and the Casagrande methods (Wasti), March, 26

Parameter sensitivity of hydraulic conductivity testing procedure (Peirce, Sallfors, and Peterson), Dec., 223

Undrained deformability and strength characteristics of soft Bangkok clay by the screw plate test (Bergado and Huan), Sept., 113

Coal: Triaxial testing of brittle sandstone using a multiple failure state method (Cairn, Yuen, Le Bel, Crawford, and Lau), Dec., 213

Cohesive soils: Evaluation of shear strength in cohesive soils with special reference to Swedish practice and experience (Larsson, Bergdahl, and Eriksson), Sept., 105

Cohesionless soils: Directional shear cell experiments on a dry cohesionless soil (Sture, Budiman, Ontuna, and Ko), June, 71

Compaction

Differential flow patterns through compacted clays (Peirce, Sallfors, and Ford), Dec., 218

Methods of evaluating the expansion potential of compacted soils with significant fractions of large aggregate (Houston and Vann), June, 59

Cone penetration tests: Cone penetration of partially saturated sands (Hyrciw and Dowding), Sept., 135

Cone penetrometer: Liquid limit determination—further simplified (Nagaraj, Murthy, and Bindumadhava), Sept., 142


Creep: The prediction of fracture fatigue parameters from creep testing of soil cement (Kim and Little), Sept., 97

D

Degradation: Quantity of fines produced during crushing, handling, and placement of roadway aggregates (Pintner, Vinson, and Johnson), Dec., 31

Demiris, C. A.: Investigation of boundary friction effects in polyaxial tests, June, 86

Deposition intensity: Factors affecting sand specimen preparation by raining (Rad and Tumay), March, 31

Diffusers: Factors affecting sand specimen preparation by raining (Rad and Tumay), March, 31

Dimethyl sulfoxide: The dimethyl sulfoxide (DMSO) accelerated weathering test for aggregates (Szymoniak, Vinson, Wilson, and Walker), Dec., 173

Dowding, C. H.: see Hyrciw, R. D. and Dowding, C. H.

Drill holes: Suggested method for performing the borehole shear test (Subcommittee D18.02), March, 19

Durability: The dimethyl sulfoxide (DMSO) accelerated weathering test for aggregates (Szymoniak, Vinson, Wilson, and Walker), Dec., 173

Dynamic response

Dynamic high stress experiments (Felice, Gaffney, Brown, Olsen), Dec., 192

Resonant column testing of frozen Ottawa sand (Boscher and Nelson), Sept., 123

E

Electrolyte: A low-cost electrolytic tiltmeter for measuring slope deformation (Zhang), June, 91

Eriksson, L.: see Larsson, R., Bergdahl, U., and Eriksson, L.

Expansion: Methods of evaluating the expansion potential of compacted soils with significant fractions of large aggregate (Houston and Vann), June, 59

Expansive clays: Methods of evaluating the expansion potential of compacted soils with significant fractions of large aggregate (Houston and Vann), June, 59

Copyright © 1987 by ASTM International

www.astm.org
Expansive solids: Modified free swell index for clays (Sivapullaiah, Sitharam, and Rao), June, 80

Experimental design: Parameter sensitivity of hydraulic conductivity testing procedure (Peirce, Sallfors, and Peterson), Dec., 223

F

Fatigue failure: The prediction of fracture fatigue parameters from creep testing of soil cement (Kim and Little), Sept., 97

Flat dilatometer test: Determining preconsolidation stress and penetration pore pressures from DMT contact pressures (Mayne), Sept., 146


Field tests: Infiltration testing for hydraulic conductivity of soil liners (Stewart and Nolan), June, 41

Fines: Quantity of fines produced during crushing, handling, and placement of roadway aggregates (Pintner, Vinson, and Johnson), Dec., 165


Frost heave tests: Procedure for determining the segregation potential of freezing soils (Konrad), June, 51

Frozen soils: Procedure for determining the segregation potential of freezing soils (Konrad), June, 51

Resonant column testing of frozen Ottawa sand (Boscher and Nelson), Sept., 123

G-H

Gaffney, E. S.: see Felice, C. W., Gaffney, E. S., Brown, J. A., and Olsen, J. M.

Holmstedt: Dynamic high stress experiments on soil (Felice, Gaffney, Brown, and Olsen), Dec., 192

Houston, S. L. and Vann, J. D.: Methods of evaluating the expansion potential of compacted soils with significant fractions of large aggregate (Houston and Vann), June, 59


Hrycik, R. D. and Dowding, C. H.: Cone penetration of partially saturated sands, Sept., 135

Huan, N. M.: see Bergado, D. T. and Huan, N. M.

Hydraulic conductivity: Differential flow patterns through compacted clays (Peirce, Sallfors, and Ford), Dec., 218

Infiltration testing for hydraulic conductivity of soil liners (Stewart and Nolan), June, 41

Parameter sensitivity of hydraulic conductivity testing procedure (Peirce, Sallfors, and Peterson), Dec., 223

I-K

Impervious lining: Infiltration testing for hydraulic conductivity of soil liners (Stewart and Nolan), June, 41

In-situ testing: Cavity expansion tests in a hollow cylinder cell (Jurand and BenSaid), Dec., 203

Iseenhower, W. M., Stokoe, K. H., II, and Allen, J. C.: Instrumentation for torsional shear/resonant column measurements under anisotropic stresses, Dec., 183

Johnson, E. G.: see Pintner, R. M., Vinson, T. S., and Johnson, E. G.

Jurand, J. and BenSaid, M. A.: Cavity expansion tests in a hollow cylinder cell, Dec., 203

Kim, Y. and Little, D.: The prediction of fracture fatigue parameters from creep testing of soil cement, Sept., 97


Konrad, J.-M.: Procedure for determining the segregation potential of freezing soils, June, 51

Laboratory tests: Discussion of "A New Automatic Volume Change, Monitoring Device" by N. S. Rad and G. W. Clough (Youssef), March, 38

Factors affecting sand specimen preparation by raining (Rad and Tumay), March, 31

Instrumentation for torsional shear/resonant column measurements under anisotropic stress (Iseenhower, Stokoe, and Allen), Dec., 183

Larsson, R., Bergdahl, U., and Eriksson, L.: Evaluation of shear strength in cohesive soils with special reference to Swedish practice and experience, Sept., 105


Lin, H. and Selig, E. T.: An alternative method for determining the membrane penetration correction curve, Sept., 151

Liquid limit: Discussion on "liquid limit of montmorillonite soils" by A. Sridharan, S. M. Rao, and N. S. Murthy (Youssef), Sept., 156

Liquid limit determination—further simplified (Nagaraj, Murthy, and Bindumadhaba), Sept., 142

Liquid and plastic limits as determined from the fall cone and Casagrande methods (Wasti), March, 26

Liquid and plastic limits as determined from the fall cone and Casagrande methods (Wasti), March, 26

Little, D. N.: see Kim, Y. and Little, D. N.


M

Mayne, P. W.: Determining preconsolidation stress and penetration pore pressures from DMT contact pressures, Sept., 146

Membranes: An alternative method for determining the membrane penetration correction curve (Lin and Selig), Sept., 151

Moisture contents: Liquid limit determination—further simplified (Nagaraj, Murthy, and Bindumadhaba), Sept., 142

Montmorillonite: Discussion on "liquid limit of montmorillonite soils" by A. Sridharan, S. M. Rao, and N. S. Murthy, Sept., 156

Murthy, B. R. S.: see Nagaraj, T. S., Murthy, B. R. S., and Bindumadhaba

N-O

Nagaraj, T. S., Murthy, B. R. S., and Bindumadhaba: Liquid limit determination—further simplified, Sept., 142


Nolan, T. W.: see Stewart, J. P. and Nolan, T. W.


Ooi, L. H. and Carter, J. P.: A constant normal stiffness direct shear device for static and cyclic loading, March, 3

Overconsolidation penetration tests: Determining preconsolidation stress and penetration pore pressures from DMT contact pressures (Mayne), Sept., 146

P


Peterson, E.: see Peirce, J. J., Sallfors, G., and Peterson, E.

Piles: A constant normal stiffness direct shear device for static and cyclic loading (Ooi and Carter), March, 3

Pintner, R. M., Vinson, T. S., and Johnson, E. G.: Quantity of fines produced during crushing, handling, and placement of roadway aggregates, Dec., 165

Plastic limit: Liquid and plastic limits as determined from the fall cone and Casagrande methods (Wasti), March, 26

Polyaxial tests: Investigation of boundary friction effects in polyaxial tests (Demiris), June, 86

Pore pressures: Discussion of "a new automatic volume change monitoring device" by N. S. Rad and G. W. Clough (Youssef), March, 38

Precision: Reproducibility of borehole shear test results in marine clay (Lutenegger and Timian), March, 13

Pressuremeter: Cavity expansion test in a hollow cylinder cell (Jurand and BenSaid), Dec., 203

Pressuremeter tests: Undrained deformability and strength characteristics of soft Bangkok clay by the screw plate test (Bergado and Huan), Sept., 113

R

Rad, N. S. and Tumay, M. T.: Factors affecting sand specimen preparation by raining, March, 37


Reconsolidation penetration test: Determining preconsolidation stress and penetration pore pressures from DMT contact pressures (Mayne), Sept., 146
Rocks: Investigation of boundary friction effects in polyaxial tests (Demiris), June, 86

Salifors, G.
see Peirce, J. J., Salifors, G., and Ford, K.
see Peirce, J. J., Salifors, G., and Peterson, E.

Sands
An alternative method for determining the membrane penetration correction curve (Lin and Selig), Sept., 151
Cone penetration of partially saturated sands (Hryciw and Dowding), Sept., 135
Resonant column testing of frozen Ottawa sand (Boscher and Nelson), Sept., 123
The revised ASTM standard on the description and identification of soils (visual-manual procedure) (Howard), Dec., 229

Sandstone: Triaxial testing of brittle sandstone using a multiple failure state method (Cain, Yuen, Le Bel, Crawford, and Lau), Dec., 213

Saturation: Cone penetration of partially saturated sands (Hryciw and Dowding), Sept., 135

Schreiner, H. D.: Discussion on “liquid limit of montmorillonite soils” by A. Sridharan, S. M. Rao, and N. S. Murthy (Youssef), Sept., 156
Screw plate tests: Undrained deformability and strength characteristics of soft Bangkok clay by the screw plate test (Bergado and Huan), Sept., 13
Segregation potential: Procedure for determining the segregation potential of freezing sands (Konrad), June, 51
Selig, E. T.: see Lin, H. and Selig, E. T.

Sensors: A low-cost electrolytic tiltmeter for measuring slope deformation (Zhang), June, 91

Shear strength
A constant normal stiffness direct shear device for static and cyclic loading (Ooi and Carter), March, 3
Evaluation of shear strength in cohesive soils with special reference to Swedish practice and experience (Larsson, Bergdahl, and Eriksson), Sept., 105

Shear tests
A constant normal stiffness direct shear device for static and cyclic loading (Ooi and Carter), March, 3
Suggested method for performing the borehole shear test (Subcommittee D18.02), March, 19

Sitharam, T. G.: see Sivapullaiah, P. V., Sitharam, T. G., and Rao, K. S. S.
Sivapullaiah, P. V., Sitharam, T. G., and Rao, K. S. S.: Modified free swell index for clays, June, 80

Soils
Discussion on “liquid limit of montmorillonite soils” by A. Sridharan, S. M. Rao, and N. S. Murthy (Youssef), Sept., 156
Instrumentation for torsional shear/resonant column measurements under anisotropic stresses (Isenhower, Stokoe, and Allen), Dec., 183
The revised ASTM standard on the description and identification of soils (visual-manual procedure) (Howard), Dec., 229

Soil cement: The prediction of fracture fatigue parameters from creep testing of soil cement (Kim and Little), Sept., 97

Soil classification: The revised ASTM standard on the description and identification of soils (visual-manual procedure), Dec., 229

Soil dynamics: Instrumentation for torsional shear/resonant column measurements under anisotropic stresses (Isenhower, Stokoe, and Allen), Dec., 183

Soil testing: Reproducibility of borehole shear test results in marine clay (Lutenegger and Timian), March, 13

Soil tests
Discussion of “A New Automatic Volume Change Monitoring Device” by N. S. Rad and G. W. Clough (Youssef), March, 38
Method free swell index for clays (Sivapullaiah, Sitharam, and Rao), June, 80
Suggested method for performing the borehole shear test (Subcommittee D18.02), March, 19

Statistical analysis: Parameter sensitivity of hydraulic conductivity testing procedure (Peirce, Sallfors, and Peterson), Dec., 223
Stewart, J. P. and Nolan, T. W.: Infiltration testing for hydraulic conductivity of soil liners, June, 41

Stokoe, K. H., II: see Isenhower, W. M., Stokoe, K. H., II, and Allen, J. C.
Strain rate: Dynamic high stress experiments on soil (Felicie, Gaffney, Brown, and Olsen), Dec., 192

Stress-strain behavior: Directional shear cell experiments on a dry cohesionless soil (Sture, Budiman, Ontuna, and Ko), June, 71
Sture, S., Budiman, J. S., Ontuna, A. K., and Ko, H.-Y.: Directional shear cell experiments on a dry cohesionless soil, June, 71

Subcommittee D18.02: Suggested method for performing the borehole shear test, March, 19

Swelling index: Modified free swell index for clays (Sivapullaiah, Sitharam, and Rao), June, 80


T

Tiltmeters: A low-cost electrolytic tiltmeter for measuring slope deformation (Zhang), June, 91

V

Vane shear test: Evaluation of shear strength in cohesive soils with special reference to Swedish practice and experience (Larsson, Bergdahl, and Eriksson), Sept., 105

Vann, J. D.: see Houston, S. L. and Vann, J. D.

Vinson, T. S. see Pintner, R. M., Vinson, T. S., and Johnson, E. G.
see Szymoniak, T., Vinson, T. S., Wilson, J. E., and Walker, N.

W-Z

Walker, N.: see Szymoniak, T., Vinson, T. S., Wilson, J. E., and Walker, N.
Wasti, Y.: Liquid and plastic limits as determined from the fall cone and the Casagrande methods, March, 26
Wilson, J. E.: see Szymoniak, T., Vinson, T. S., Wilson, J. E., and Walker, N.
Youssef, H.: Discussion of “a new automatic volume change monitoring device” by N. S. Rad and G. W. Clough, March, 38
Zhang, X.: A low-cost electrolytic tiltmeter for measuring slope deformation, June, 91