You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 27, Issue 1 (January 2004)

    Self-Healing of Concentrated Leaks at Core-Filter Interfaces in Earth Dams

    (Received 5 October 2001; accepted 4 March 2003)

    Published Online: 01 January 2004


      Format Pages Price  
    PDF (588K) 10 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Concentrated leaks at core-filter interfaces in earth dams increase erodibility of soils, which may lead to catastrophic failures. In this paper, mathematical and experimental testing methods are suggested to determine the self-healing nature of these leaks. The methods are fundamentally different from the existing empirical methods in that they do not involve comparison of particle sizes of the base (D85) and filter (D15) soils. They are based on the fundamental processes of particle transport and deposition phenomena. An advection type equation is used with a deposition coefficient (λ) to describe particle transport in filters. The nature of particle deposition at the interface, which is described by an exponential attenuation function with respect to distance, is used to infer the possibility of self-healing. The experimental method involves extension of a test previously published in this journal. The method essentially involves a flow pump to evaluate the erodibility of base soils, determine λ and characterize the filters, and test combined base soil-filter systems to evaluate self-healing potential of a number of filters relative to each other. The results from the experimental method using three different filters and a Group II base soil were interpreted and analyzed using the mathematical model. The methods suggest that the entire particle-size distribution, and not mere D15, governs particle accumulation at the interface. The proposed methods are useful for relative comparison of self-healing capabilities of various filters for a given base soil.

    Author Information:

    Reddi, LN
    Professor and Head, Kansas State University, ManhattanKS,

    Kakuturu, SP
    Doctoral research associate, Kansas State University, Manhattan, KS

    Stock #: GTJ11262J


    DOI: 10.1520/GTJ11262J

    Title Self-Healing of Concentrated Leaks at Core-Filter Interfaces in Earth Dams
    Symposium ,
    Committee D18