You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 24, Issue 4 (December 2001)

    Determination of Thickness of Smooth Geomembranes

    (Received 5 December 2000; accepted 27 April 2001)

    Published Online: 01 December 2001


      Format Pages Price  
    PDF (232K) 11 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Tests were conducted to determine thickness of smooth, nonreinforced geomembranes using three methods: mechanical (according to ASTM and European standards), ultrasonic, and magnetic methods. The mechanical method is the standard procedure used for determining thickness of geomembranes. The ultrasonic and magnetic methods are not commonly used for geomembranes; however, they are used for testing other materials such as metals. Tests were conducted on 15 geomembranes representing five types of polymers (HDPE, LLDPE, PVC, PP, and EPDM). The results of the testing program indicated that the level of pressures applied affected the thickness measurements in mechanical tests. While the low pressures were not sufficient to flatten particularly the rigid geomembranes, the high pressures tended to compress the geomembranes excessively. Both high and low pressures prevented obtaining representative measurements. The measurements obtained using the ASTM method were more reliable than the measurements obtained with the European method, although it is believed that the most reliable measurements can be obtained by the nondestructive methods (ultrasonic and magnetic). These techniques are sensitive only to the thickness of the materials due to the inherent properties of the test procedures, and they work equally well for rigid and flexible geomembranes. Of the two nondestructive methods, ultrasonic testing is better due to several advantages: it allows for testing from the top surface of geoembranes in the laboratory or in the field, and it can be used on coupons of geomembranes as well as on whole sheets without the need for removing test samples. Both nondestructive methods can be improved for application to geomembranes.

    Author Information:

    Yesiller, N
    Associate professor, Wayne State University, Detroit, MI

    Cekic, A
    Graduate assistant, Wayne State University, Detroit, MI

    Stock #: GTJ11133J


    DOI: 10.1520/GTJ11133J

    Title Determination of Thickness of Smooth Geomembranes
    Symposium ,
    Committee D18