Cement, Concrete, and Aggregates
Index to Volume 12
1990

<table>
<thead>
<tr>
<th>Number</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summer</td>
<td>3–60</td>
</tr>
<tr>
<td>2</td>
<td>Winter</td>
<td>61–128</td>
</tr>
</tbody>
</table>

A
Abrasion loss: Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar (Fwa and Low), Winter, 101

Abrasion resistance
Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar (Fwa and Low), Winter, 101

Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag (Fernandez and Malhotra), Winter, 87

Compensate strength
Diagnostic Criteria for Anisotropy of Concrete Strength (Leshchinsky), Winter, 117

Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

Concrete pipes: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114

Concrete strength: Principles Underlying Production of High-Performance Concrete (Mehta and Aitcin), Winter, 70

Core: Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

Corrosion: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Creep: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114.

Czarnecki, B., and Gilloitt, J. E.: The Effect of Mix Design on the Properties of Sulfur Concrete, Winter, 79

D
De Larrard, F.: A Method for Proportioning High-Strength Concrete Mixtures, Summer, 47

Djellouli, H.: see Sarkar, S., Aitcin, P.-C., and Djellouli, H.

Al-Mana, A.: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.

Al-Obaid, Y. F.: The Creep of Concrete Pipes in Kuwait, Winter, 114.

Anisotropy: Anisotropy of Concrete Strength (Leshchinsky), Winter, 117

B
Blast-furnace slag: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Blended cements: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Building codes: Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

C
Chloride-ion permeability: Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag (Fernandez and Malhotra), Winter, 87

Fischer, H. C.: Molybdenum Trioxide—an Accelerator of Portland Cement Hydration, Summer, 53

Fly ash: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38

Freezing and thawing: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) (Pleau, Plante, Gagne, and Pigeon), Summer, 3

Fwa, T. F. and Low, E. W.: Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar, Winter, 101

G
Gagne, R.: see Pleau, P., Plante, P., Gagne, R., and Pigeon, M.

Gilcoitt, J. E.: see Czarnecki, B. and Gilloitt, J. E.

Glycerin admixture: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gilloitt), Winter, 79

Gray, R. J.: Results of an Interlaboratory Concrete Testing Program: Part I, Summer, 12

Ground granulated blast-furnace slag: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38

H
High-strength concrete: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47

I-J
Impermeability: Principles Underlying Production of High-Performance Concrete (Mehta and Aitcin), Winter, 70

Interlaboratory testing program: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12

K
King Faisal Road: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114.

L
Leshchinsky, A. M.: Anisotropy of Concrete Strength, Winter, 117
INDEX 125

Leshchinsky, A. M.: Determination of Concrete Strength by Nondestructive Methods, Winter, 107

Li, G.-Z.: see Feng, N.-Q., Li, G.-Z., and Zang, X.-W.

Low, E. W.: see Fwa, T. F. and Low, E. W.

M

Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans, Summer, 24

Mehta, P. K. and Aitcin, P.-C. C.: Principles Underlying Production of High-Performance Concrete, Winter, 70

Microscopical examination: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) (Pleau, Plante, Gagne, and Pigeon), Summer, 3

Mix proportions: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47

Mix segregation: Anisotropy of Concrete Strength (Leshchinsky), Winter, 117

Molybdenum trioxide: Molybdenum trioxide—an Accelerator of Portland Cement Hydration (Fischer), Summer, 53

P

Particle size distribution: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38

Pigeon, M.: see Pleau, R., Plante, P., Gagne, R., and Pigeon, M.

Plante, P.: see Pleau, R., Plante, P., Gagne, R., and Pigeon, M.

Portland cement hydration: Molybdenum Trioxide—an Accelerator of Portland Cement Hydration (Fischer), Summer, 53

R

Rheological models: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47

S

Saricimen, H.: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.

Sarkar, S., Aitcin, P.-C., and Djellouli, H.: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete, Summer, 32

Shamim, M.: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.

Silane admixtures: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gillott), Winter, 79

Silica fume: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32

Slag: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32

Sulfur concrete: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gillott), Winter, 79

V

Variability: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12

Very high-strength concrete: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32

W

Within- and between-laboratory: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12

Z

Zang, X.-W.: see Feng, N.-Q., Li, G.-Z., and Zang, X.-W.

Zeolitic mineral admixture: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61

ZMA: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61.

N–O

Natural zeolite: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61.