Cement, Concrete, and Aggregates
Subject Index
Volume 18, 1996

A-B
Absorption
Monitoring the influence of water and ionic ingress on cover-zone concrete subjected to repeated absorption (McCarter, WJ), June, 55

Aggregate evaluation
Alkali limits for prevention of alkali-silica reaction: a brief review of their development (Hill, ED), June, 3

Air entrainment
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part II—Experimental results (Pleau, R, Pigeon, M, Laurencot, JL, and Gagne, R), June, 30
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part I—Description of the test method (Pleau, R and Pigeon, M), June, 19

Air voids
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part I—Description of the test method (Pleau, R and Pigeon, M), June, 19
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part II—Experimental results (Pleau, R, Pigeon, M, Laurencot, JL, and Gagne, R), June, 30

Alkali limits
Alkali limits for prevention of alkali-silica reaction: a brief review of their development (Hill, ED), June, 3

Alkali silica reaction
Alkali limits for prevention of alkali-silica reaction: a brief review of their development (Hill, ED), June, 3

Blast furnace slag cements
Selectivity of alkaline activators for the activation of slags (Shi, C and Day, RL), June, 8

Break-off test
Break-off test for high-strength concrete, (Di Maio, A, Giaccio, G, and Zerbino, R), June, 15

Cement paste
Tensile and compressive strength of silica fume-cement pastes and mortars (Toutanjii, HA and El-Korchi, T), Dec., 78

Cementitious composites
Tensile and compressive strength of silica fume-cement pastes and mortars (Toutanjii, HA and El-Korchi, T), Dec., 78

Compressive strength
Mechanical properties of normal to high-strength steel fiber-reinforced concrete (Khaloo, AR and Kim, N), Dec., 92

Corrosion
Durability of reinforced lightweight mortars with corrosion inhibitors, (Batis, G, Kouloumbi, N, and Katsiamoulas, A), Dec., 117

Cover region
Monitoring the influence of water and ionic ingress on cover-zone concrete subjected to repeated absorption (McCarter, WJ), June, 55

Curing temperature
Improving initial strength of a concrete made with Type 20M cement (Kessal, M, Nkinamubanzi, P-C, Tagnit-Hamou, A, and Aitcin, P-C), June, 49

Deicing
Precision of tests for assessment of the deicer salt scaling resistance of concrete, (Marchand, J, Pleau, R, and Pigeon, M), Dec., 85

Durability
Monitoring the influence of water and ionic ingress on cover-zone concrete subjected to repeated absorption (McCarter, WJ), June, 55

Electrical conductivity
Monitoring the influence of water and ionic ingress on cover-zone concrete subjected to repeated absorption (McCarter, WJ), June, 55

Factorial design
Improving initial strength of a concrete made with Type 20M cement (Kessal, M, Nkinamubanzi, P-C, Tagnit-Hamou, A, and Aitcin, P-C), June, 49

Fiber-reinforced
Mechanical properties of normal to high-strength steel fiber-reinforced concrete (Khaloo, AR and Kim, N), Dec., 92

Flow
Factors influencing flow and strength of standard mortars and reappraisal of ASTM test methods for fly ash (Helmuth, R), Dec., 98

Flow length
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part I—Description of the test method (Pleau, R and Pigeon, M), June, 19
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part II—Experimental results (Pleau, R, Pigeon, M, Laurencot, JL, and Gagne, R), June, 30

Fly ash
Performance and correlation of the properties of fly ash cement concrete, (Al-Amoudi, OSB, Maslehuddin, M, and Asi, IM), Dec., 71
Factors influencing flow and strength of standard mortars and reappraisal of ASTM test methods for fly ash (Helmuth, R), Dec., 98

Freeze-thaw tests
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part I—Description of the test method (Pleau, R and Pigeon, M), June, 19
Use of the flow length concept to assess the efficiency of air entrainment with regards to frost durability: Part II—Experimental results (Pleau, R, Pigeon, M, Laurencot, JL, and Gagne, R), June, 30

Copyright © 1996 by ASTM International

www.astm.org
H

High-strength concrete

Break-off test for high-strength concrete, (Di Maio, A, Giaccio, G, and Zerbino, R), June, 15

High-performance concrete

Improving initial strength of a concrete made with Type 20M cement (Kessal, M, Nkinamubanzi, P-C, Tagnit-Hamou, A, and Aitcin, P-C), June, 49

High-strength concrete

Strength and microstructure of high-strength paste containing silica fume, (Li, Y, Langan, BW, and Ward, MA), Dec., 112

Hydraulic activity test

Selectivity of alkaline activators for the activation of slags (Shi, C and Day, RL), June, 8

Hydraulic cement

Alkali limits for prevention of alkali-silica reaction: a brief review of their development (Hill, ED), June, 3

Hydration chemistry

Selectivity of alkaline activators for the activation of slags (Shi, C and Day, RL), June, 8

L-M

Lightweight aggregates

Durability of reinforced lightweight mortars with corrosion inhibitors, (Batis, G, Kouloumbi, N, and Katsiamboulas, A), Dec., 117

Microstructure

Strength and microstructure of high-strength paste containing silica fume, (Li, Y, Langan, BW, and Ward, MA), Dec., 112

Modulus of rupture

Mechanical properties of normal to high-strength steel fiber-reinforced concrete (Khaloo, AR and Kim, N), Dec., 92

Mortars

Factors influencing flow and strength of standard mortars and reappraisal of ASTM test methods for fly ash (Helmuth, R), Dec., 98

Permeability

Performance and correlation of the properties of fly ash cement concrete, (Al-Amoudi, OSB, Maslehuddin, M, and Asi, IM), Dec., 71

P

Porosity

Performance and correlation of the properties of fly ash cement concrete, (Al-Amoudi, OSB, Maslehuddin, M, and Asi, IM), Dec., 71

Portland cement

Factors influencing flow and strength of standard mortars and reappraisal of ASTM test methods for fly ash (Helmuth, R), Dec., 98

Pulse velocity

Comparison of five standards on ultrasonic pulse velocity testing of concrete (Komlos, K, Popovics, S, Nurnbergerova, T, Babal, B, and Popovics, JS), June, 42

S-U

Scaling

Precision of tests for assessment of the deicer salt scaling resistance of concrete, (Marchand, J, Pleau, R, and Pigeon, M), Dec., 85

Silica fume

Strength and microstructure of high-strength paste containing silica fume, (Li, Y, Langan, BW, and Ward, MA), Dec., 112

Standardization

Comparison of five standards on ultrasonic pulse velocity testing of concrete (Komlos, K, Popovics, S, Nurnbergerova, T, Babal, B, and Popovics, JS), June, 42

Statistical variability

Precision of tests for assessment of the deicer salt scaling resistance of concrete, (Marchand, J, Pleau, R, and Pigeon, M), Dec., 85

Steel reinforcement

Durability of reinforced lightweight mortars with corrosion inhibitors, (Batis, G, Kouloumbi, N, and Katsiamboulas, A), Dec., 117

Strength

Comparison of five standards on ultrasonic pulse velocity testing of concrete (Komlos, K, Popovics, S, Nurnbergerova, T, Babal, B, and Popovics, JS), June, 42

Factors influencing flow and strength of standard mortars and reappraisal of ASTM test methods for fly ash (Helmuth, R), Dec., 98

Ultrasonic pulse

Comparison of five standards on ultrasonic pulse velocity testing of concrete (Komlos, K, Popovics, S, Nurnbergerova, T, Babal, B, and Popovics, JS), June, 42