Journal Published Online: 04 April 2017
Volume 6, Issue 1

Mechanistic Analysis and Cost-Effectiveness of Rubber and Polymer Modified Asphalt Mixtures

CODEN: ACEM59

Abstract

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to prolong the fatigue life for an asphaltic mixture is to add flexible materials such as rubber or polymers to the asphalt mixture. A laboratory testing program was performed on three gap-graded mixtures: unmodified, asphalt rubber (AR), and polymer-modified. Strain controlled fatigue tests were conducted according to the AASHTO T321-14 procedure. The results from the beam fatigue tests indicated that the AR and polymer-modified gap graded mixtures would have much longer fatigue lives compared to the reference (unmodified) mixture. In addition, a mechanistic analysis using 3D-Move software coupled with a cost-effectiveness analysis study based on the fatigue performance on the three mixtures were performed. Overall, the analysis showed that the AR and polymer-modified asphalt mixtures exhibited significantly higher cost-effectiveness compared to unmodified HMA mixture. Although AR and polymer-modification increases the cost of the material, the analysis showed that they are more cost effective than the unmodified mixture.

Author Information

Souliman, M.
Departments of Civil Engineering and Construction Management, The Univ. of Texas at Tyler, TX, US
Mamlouk, M.
Civil Environmental and Sustainable Engineering, Arizona State Univ., Tempe, AZ, US
Eifert, A.
Departments of Civil Engineering and Construction Management, The Univ. of Texas at Tyler, TX, US
Pages: 13
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: ACEM20160069
ISSN: 2165-3984
DOI: 10.1520/ACEM20160069