You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    Volume 3, Issue 1

    Viscoelastic–Viscoplastic Characterization of Unbound Granular Material

    (Received 9 March 2013; accepted 4 December 2013)

    Published Online: 2014


      Format Pages Price  
    PDF (1.9M) 23 $25   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    The mechanical behavior of unbound granular materials had proven to be extremely challenging. In the pavement field, as well as in other geotechnical disciplines, these materials are usually treated as time-independent. The objective of this work is to explore the applicability and potential for a viscoelastic-viscoplastic constitutive theory to characterize unbound granular materials. Such a theory contains as special cases the commonly applied elastic and elasto-plastic behavior types, it is capable of modeling time-dependence, and can be further compounded to simulate more sophisticated effects. Laboratory investigation is presented, in which a compacted granular specimen was exposed to a sequence of unidirectional creep and recovery cycles while under constant confinement conditions. Such a testing protocol offers an almost “automatic” separation of the behavior into resilient (viscoelastic) and permanent (viscoplastic) components. Described in detail are experimental issues related to specimen fabrication and instrumentation, and also test data processing for size reduction and resolution improvement. The measurements demonstrate that the material creeps under load and exhibits partial, time-dependent recovery while unloaded. A one-dimensional viscoelastic-viscoplastic constitutive theory is applied as a first attempt to reproduce the results. It is found that the model performs very well, simulating the observed data trends and magnitudes; it is therefore deemed potentially generalizable to more advanced conditions.

    Author Information:

    Levenberg, Eyal
    Assistant Professor, Technion—Israel Institute of Technology, Faculty of Civil and Environmental Engineering, Haifa,

    Stock #: ACEM20130070


    DOI: 10.1520/ACEM20130070

    Title Viscoelastic–Viscoplastic Characterization of Unbound Granular Material
    Symposium ,
    Committee D04