Standard Historical Last Updated: Jan 31, 2017 Track Document
ASTM D6034-96(2010)e1

Standard Test Method (Analytical Procedure) for Determining the Efficiency of a Production Well in a Confined Aquifer from a Constant Rate Pumping Test

Standard Test Method (Analytical Procedure) for Determining the Efficiency of a Production Well in a Confined Aquifer from a Constant Rate Pumping Test D6034-96R10E01 ASTM|D6034-96R10E01|en-US Standard Test Method (Analytical Procedure) for Determining the Efficiency of a Production Well in a Confined Aquifer from a Constant Rate Pumping Test Standard new BOS Vol. 04.09 Committee D18
$ 75.00 In stock

Significance and Use

This test method allows the user to compute the true hydraulic efficiency of a pumped well in a confined aquifer from a constant rate pumping test. The procedures described constitute the only valid method of determining well efficiency. Some practitioners have confused well efficiency with percentage of head loss associated with laminar flow, a parameter commonly determined from a step-drawdown test. Well efficiency, however, cannot be determined from a step-drawdown test but only can be determined from a constant rate test.

Assumptions:

Control well discharges at a constant rate, Q.

Control well is of infinitesimal diameter.

Data are obtained from the control well and, if available, a number of observation wells.

The aquifer is confined, homogeneous, and areally extensive. The aquifer may be anisotropic, and if so, the directions of maximum and minimum hydraulic conductivity are horizontal and vertical, respectively.

Discharge from the well is derived exclusively from storage in the aquifer.

Calculation RequirementsFor the special case of partially penetrating wells, application of this test method may be computationally intensive. The function fs shown in Eq 6 must be evaluated using arbitrary input parameters. It is not practical to use existing, somewhat limited, tables of values for fs and, because this equation is rather formidable, it is not readily tractable by hand. Because of this, it is assumed the practitioner using this test method will have available a computerized procedure for evaluating the function fs. This can be accomplished using commercially available mathematical software including some spreadsheet applications or by writing programs in languages, such as Fortran or C. If calculating fs is not practical, it is possible to substitute the Kozeny equation for the Hantush equation as previously described.

Scope

1.1 This test method describes an analytical procedure for determining the hydraulic efficiency of a production well in a confined aquifer. It involves comparing the actual drawdown in the well to the theoretical minimum drawdown achievable and is based upon data and aquifer coefficients obtained from a constant rate pumping test.

1.2 This analytical procedure is used in conjunction with the field procedure, Test Method D4050.

1.3 The values stated in inch-pound units are to be regarded as standard, except as noted below. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.

1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.

1.4 LimitationsThe limitations of the technique for determination of well efficiency are related primarily to the correspondence between the field situation and the simplifying assumption of this test method.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 04.09
Developed by Subcommittee: D18.21
Pages: 8
DOI: 10.1520/D6034-96R10E01
ICS Code: 93.160