Fracture of Gamma and Delta Hydrides during Delayed Hydride Cracking

19th International Symposium on Zirconium in the Nuclear Industry

S.M. Hanlon¹, G.A. McRae², C.E. Coleman², and A. Buyers¹

¹Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
²Carleton University, Ottawa, Ontario, Canada

May 2019
Limiting Conditions for DHC

- Delayed Hydride Cracking (DHC) is a mechanism responsible for extension of flaws in pressure tubes and fuel cladding
 - Nucleation, growth, fracture of hydrides
 - Chemical potential
 - Leak-before-break

Limiting conditions
- $[\text{H}]$, solubility limits
- Stress intensity (K_{IH})
- Temperature
- Temperature history

Mechanism: $[\text{H}]$ in bulk and at crack tip depends on temperature history [34]

Hydrides

• Bulk hydrides and DHC hydrides do not necessarily form under the same conditions

• X-Ray Diffraction (XRD) of fracture surfaces can reveal how DHC hydride morphology changes with test temperature
 • Focus on DHC hydrides rather than bulk hydrides

• δ core - γ shell hydride morphology [20,21,24]
Experimental

- Material: Zr-2.5Nb plate (similar to pressure tube)
- Cantilever beam specimens (3.2 mm width)
- Axial cracking in transverse plane
- $K=17$ MPa√m (constant load)
- Test temperatures from 25 °C to 270 °C
 - Heat-up tests on quenched material
 - T_1 ranges from -30 °C to 220 °C
- Over 200 tests performed
- DSC on quenched material
Cool-down DHC Data

- Cool-down data (below T6) follows Arrhenius behaviour
- No effect of [H] below T6
Quenched ‘Conundrum’

- Slow cooling to a T_{test} leads to similar DHCV as quenching and then heating to the same T_{test}
- Slow cooling and then heating to the same T_{test} leads to slower DHC rates
- No history effect at room temperature
Quenching and DSC

- Quenching is an ‘extreme’ temperature history
 - Affects bulk hydride morphology
- Shifts the apparent solubility measured by DSC
 - Similar to removing radiation damage
 - Shift decreases as test temperature increases
- More hydrogen in solution generally means higher DHCV
All DHC Data

- Various hydrogen concentrations
- Accuracy of schematic diagram
- Determine conditions under which DHC will not occur
Stopping DHC by Heating

- Good agreement with previous work (irradiated Zircaloy-2)
- Quenching increases required temperature difference (empty symbols in box)
- Can be used to inform reactor manoeuvering strategies
 - Confirm with irradiated Zr-2.5Nb data

DHC Modelling

- Prediction 1 is the Diffusion First Model [10]
 - Accurately predicts \(T_5 \) to \(T_6 \) region
- Prediction 2 is the Precipitation First Model [33]
- Both models under-predict at low temperatures

Poor DHC Model Predictions at Low Temperature

- Hydrogen in solution is very low at room temperature – less than 5 ppm [18]
 - Very little hydrogen available to diffuse to crack tip
 - Diffusion is slow at room temperature
- Trend in temperature maneuver plot changes around 200 °C
- DHC models either directly or indirectly assume the DHC hydride phase does not change with temperature
 - Ambler et al. assumed DHC hydride is always δ [11]
 - In-situ room temperature TEM shows γ at room temperature [29]
 - δ and γ have different stoichiometry, crystal structure, and morphology

DHC Hydride Phase on Fracture Surfaces

- XRD spectra from DHC fracture surfaces
 - Room temp
- Top: test temperature of 240 °C
- Bottom: test temperature of 25 °C
- Small fraction of signal from bulk hydrides
- No change after 1 year at RT
- Consistent with γ hydride stability at low temperature
DHC Hydride Phase on Fracture Surfaces

- Fractured DHC hydride phase changes with test temperature
 - δ prevalent at high temperatures, γ prevalent at low temperatures
- Presence of γ should be considered in future DHC models
- No apparent effect of temperature history on fractured hydrides
Conclusions

- DHC data can be used to provide empirical guidelines and inform reactor temperature maneuvers to reduce DHC susceptibility.
- Quenched results reveal a ‘conundrum’
 - Slow cooling to T_{test} leads to similar DHCV as quenching then heating to T_{test}
 - Slow cooling then heating leads to slower DHC rates at the same T_{test}
 - Not explained/predicted by current DHC models
- Observed DSC shifts provide a partial qualitative explanation for the quenched ‘conundrum’
- γ hydride is dominant on DHC fracture surfaces below about 125 °C while δ is dominant above 225 °C
 - Implications for fuel storage
- The presence of γ hydride on DHC fracture surfaces may explain why DHC model predictions are poor below 150 °C
 - DHC models should include DHC hydride phase temperature dependence
- Follow-up with irradiated material
Questions?
\(n_c(T_e) = DFMW \left[C(b) - C_p(T_e) \frac{\gamma(a)}{\gamma(b)} \exp \left(\frac{\mu^e(a) - \mu^e(b)}{RT_t} \right) \right] \)