The Effect of Photon Irradiation on the Corrosion of Zirconium Alloys

Adrien Couet¹, Yalong He¹, Kurt Terrani², Samuel Armson², Michael Preuss³, Taeho Kim¹, Mohamed Elbakhshwan¹, and Li He¹

¹ University of Wisconsin-Madison, Madison, WI USA
² Oak Ridge National Laboratory, Oak Ridge, TN USA
³ The University of Manchester, Manchester UK

19th International Symposium on Zirconium in the Nuclear Industry
The Midland, Manchester, UK
05.20.2019 – 05.23.2019
CONTENTS

- Introduction

- The effect of UV on corrosion of Zircaloy-4
 - Introduction
 - Experimental
 - Results: Microstructure characterization with SEM and TEM

- The effect of \(\gamma \)-ray on corrosion of Zircaloy-4
 - Introduction
 - Experimental
 - Results: Microstructure characterization with ASTAR and TEM

- Conclusion
INTRODUCTION

SOURCES OF PHOTONS

- Various photon sources in nuclear power plants:

 - **Gamma rays** induced by prompt fission and nuclear decays
 - **UV light** induced by the decelerating electrons in water (Cerenkov effect)

Previous Results of UV Effect

- Effect of UV on Zr-alloy corrosion:
 - Open circuit potential of Zr alloy vary by a few tens of mV by the UV irradiation on the sample.
 - Corrosion characteristic of Zr alloy is changed by UV irradiation and it can be confirmed by In-situ electrochemical impedance spectroscopy.

Fig. Example of electrochemistry experiment results with UV irradiation [1]

INTRODUCTION

PREVIOUS RESULTS OF GAMMA-RAY EFFECT

- Effect of γ-ray on Zr-alloy corrosion:

 ![Graphs](image)

 Fig. Summary of the measured oxide thickness and ATR corrosion rate correlates with γ/n flux.

- Recent results show that the **weight gains from experimental data are significantly larger** than the predicted weight gains when the gamma/neutron ratio is larger.

- Potential effect of γ-rays on corrosion rate.

Part I: The effect of UV on corrosion of Zircaloy-4
Part I: The effect of UV on corrosion of Zircaloy-4

MOTIVATION

- Photo-electrochemical behavior from UV irradiation
 - When light of a suitable energy $h\nu$, is absorbed by the oxide film, electrons can be excited from occupied electric states into unoccupied ones:
 $$h\nu \rightarrow e^- + h^+$$
 - The other $\frac{1}{2}$ reaction can be with water to produce oxygen
 $$2H_2O + 4h^+ \rightarrow O_2 + 4H^+$$

Our goals of this project:
- Study the effect
- Propose a mechanism to explain photon irradiation effect on corrosion rate of zirconium alloy in high temperature water condition

Diagram:

- Anodic current
- Conduction band
- Electron-hole pair generation
- Electron-hole pair recombination
- Valence band
- Metal Zr
- ZrO$_2$
- Water
- Potential (eV)
Part I: The effect of UV on corrosion of Zircaloy-4

EXPERIMENTAL

- Experiment
 1) **Static autoclave** corrosion for 7 d
 2) **Flowing loop** corrosion for 7 d
- Temperature: **260 °C**

Table. Chemical composition of Zircaloy-4

<table>
<thead>
<tr>
<th>Element</th>
<th>Zr</th>
<th>Sn</th>
<th>Fe</th>
<th>Cr</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (wt.%)</td>
<td>Bal.</td>
<td>1.27</td>
<td>0.22</td>
<td>0.11</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fig. Schematic of the circulation loop connected with the autoclave

Fig. Schematic of the autoclave with sapphire window for in-situ UV irradiation
EXPERIMENTAL

- **UV source with energy:** 1.9 – 5.0 eV. (250 – 650 nm)

![Graph showing UV source output with power density 8.62W/cm²](image)

Fig. UV source output with power density 8.62W/cm²
Part I: The effect of UV on corrosion of Zircaloy-4

SEM Analysis of Oxidized Surface

- Corrosion and exposure to the UV source for 7 days in **flowing autoclave**
SEM Analysis of Oxidized Surface

- Corrosion and exposure to the UV source for 7 days in **flowing autoclave**
- Deposits are present in the UV exposed central region of the sample.
- Deposits are distributed on the surface, their **distribution is homogeneous**.

![SEM images showing oxygen, iron, and zirconium distribution](image)

- Deposits are Fe-rich oxides particles
- No Fe oxide deposits were observed on the **back of the irradiated sample** or on the **sister sample** facing another sapphire window without UV source.
Part I: The effect of UV on corrosion of Zircaloy-4

SEM Analysis of Oxidized Surface

- Corrosion and exposure to the UV source for 7 days in static autoclave
Part I: The effect of UV on corrosion of Zircaloy-4

SEM Analysis of Oxidized Surface

- Corrosion and exposure to the UV source for 7 days in static autoclave

- Particles deposits are oxides rich in Fe and some Al is observed.
Part I: The effect of UV on corrosion of Zircaloy-4

TEM Analysis of Oxidized Zircaloy-4

- Cross-sectional analysis of oxidized Zircaloy-4 with UV irradiation:

<table>
<thead>
<tr>
<th>Element</th>
<th>Fe</th>
<th>O</th>
<th>C</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>38</td>
<td>45</td>
<td>4</td>
<td>5.8</td>
</tr>
<tr>
<td>Flowing</td>
<td>39.2</td>
<td>53.9</td>
<td>0.4</td>
<td>3.6</td>
</tr>
</tbody>
</table>

- After corrosion test in static autoclave, the dissolved Fe concentration is below 100 ppb (below ICP detection limit)

Table. Average elemental composition (at.%) for particle deposits formed after UV exposure
MECHANISM OF UV ON ZrO$_2$

- Photo-induced electrochemical process at ZrO$_2$ surface:
 - Photo-reduction of soluble cations (mostly Fe$^{2+}$)
 - Other $\frac{1}{2}$ cell reaction is still under investigation

1. UV irradiation
 - $E_g = 2 - 5$ eV
2. Electron-hole pair generation
3. Redox reactions
 - $Fe^{2+} + 2e^- \rightarrow Fe$
 - $3Fe + 2H_2O \rightarrow Fe_3O_4 + 3H_2$
 (Oxidation of Fe on the ZrO$_2$ surface)
4. Hypothesis: Oxide dissolution by holes
 - $ZrO_2 + 4h^+ \rightarrow Zr^{4+} + O_2$

Origin of CRUD?
Part II: The effect of γ-ray on corrosion of Zircaloy-4
Part II: The effect of γ-ray on corrosion of Zircaloy-4

EXPERIMENTAL

- Rapid Turnaround Experiments in collaboration with ORNL
- Zirconium oxide formation on Zircaloy-4 under three conditions:
 1) no irradiation
 2) γ irradiation (Average in-core gamma flux: $2.8 \times 10^{14} \text{ g/cm}^2/\text{s}$)
 3) γ + neutron (0.2 dpa; Neutron fluence of 127 days: $8.34 \times 10^{20} \text{n/cm}^2 (> 0.1 \text{ MeV})$
 \hspace{1cm} $9.64 \times 10^{21} \text{n/cm}^2$ (all energy))

→ 20 weeks in 290 °C water at 7 MPa with very low dissolved oxygen

This experiment: 3.5
Part II: The effect of γ-ray on corrosion of Zircaloy-4

ASTAR RESULTS OF γ+N IRRADIATION

- Zircaloy-4 coupons after 20 weeks of corrosion at 290 °C, γ + neutron irradiation

Fig. ASTAR measured phases and grains

Blue: Monoclinic ZrO₂, Green: Tetragonal ZrO₂, Orange: ZrO, Yellow: Zr matrix

7.5 nm step size

3 nm step size
Part II: The effect of γ-ray on corrosion of Zircaloy-4

ASTAR RESULTS OF Γ IRRADIATION

- Zircaloy-4 coupons after 20 weeks of corrosion at 290 °C, γ irradiation

Fig. ASTAR measured phases and grains
Blue: Monoclinic ZrO$_2$, Green: Tetragonal ZrO$_2$, Orange: ZrO, Yellow: Zr matrix
Part II: The effect of γ-ray on corrosion of Zircaloy-4

ASTAR RESULTS OF NO-IRRADIATION

- Zircaloy-4 coupons after 20 weeks of corrosion at 290 °C, No irradiation

Fig. ASTAR measured phases and grains
Blue: Monoclinic ZrO$_2$, Green: Tetragonal ZrO$_2$, Orange: ZrO, Yellow: Zr matrix

7.5 nm step size

3 nm step size
Part II: The effect of γ-ray on corrosion of Zircaloy-4

ASTAR ANALYSIS OF ZIRCALOY-4

The effect of γ-ray on corrosion of Zircaloy-4

Table. ASTAR results after corrosion with different irradiation conditions

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Step size (nm)</th>
<th>Area (μm²)</th>
<th>Identified (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ + neutron</td>
<td>3</td>
<td>7.1</td>
<td>73.0</td>
</tr>
<tr>
<td>γ</td>
<td>3</td>
<td>2.3</td>
<td>63.7</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>4.8</td>
<td>76.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Monoclinic ZrO₂ (%)</th>
<th>Tetragonal ZrO₂ (%)</th>
<th>m-ZrO₂ grain size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ + neutron</td>
<td>85.3</td>
<td>13.4</td>
<td>16.0</td>
</tr>
<tr>
<td>γ</td>
<td>87.5</td>
<td>12.2</td>
<td>15.2</td>
</tr>
<tr>
<td>None</td>
<td>91.9</td>
<td>8.0</td>
<td>14.6</td>
</tr>
</tbody>
</table>

- The monoclinic oxide grain size, tetragonal oxide fraction rank as follows:

\[
\text{neutron + γ} > \gamma\text{-only} > \text{non-irradiated.}
\]
Part II: The effect of γ-ray on corrosion of Zircaloy-4

Pole Figures and Angle Distribution

- Pole figures and the angle distribution of (10\(\overline{3}\)) m-ZrO\(_2\) and (0001) Zr measured with ASTAR

 - (10\(\overline{3}\)) m-ZrO\(_2\) oxide texture strength and m-ZrO\(_2\) twin boundaries density rank as follows:

 neutron + γ > γ-only > non-irradiated
Part II: The effect of γ-ray on corrosion of Zircaloy-4

MISORIENTATION OF m-ZrO$_2$ GRAINS

Fig. Misorientation of m-ZrO$_2$ grains measured by ASTAR

- Higher twin boundary fraction may result in a lower corrosion rate due to reduced oxygen diffusion at triple point grain boundaries [1].

CONCLUSIONS

UV effect on corrosion:
1. In-situ UV irradiation at 260°C for 7 days under reducing conditions reveals that **UV irradiation induce the nucleation of Fe-rich oxide deposits** on the top of the zirconium oxide.
2. A **UV induced photocatalytic Fe deposition mechanism** is proposed to explain the above observations and **the potential effect of UV irradiation on in-reactor CRUD nucleation is discussed**.

Gamma-ray effect on corrosion:
1. The oxide grain size, tetragonal oxide fraction, $(10\bar{3})$ m-ZrO$_2$ oxide texture strength and m-ZrO$_2$ twin boundaries density rank as follows: neutron + γ > γ-only > non-irradiated.
2. The above results tend to indicate that, **at low dpa (0.2 dpa) neutron + γ irradiation sample has a more protective oxide** than γ-only sample, which has a more protective oxide than non-irradiated.
THANK YOU
ACKNOWLEDGEMENT

- This work has been performed within the framework of the international MUZIC (Mechanistic Understanding of Zirconium Corrosion) program. The authors gratefully acknowledge the industrial support from EDF, EPRI, Naval Nuclear Laboratory, Rolls-Royce, Westinghouse and Wood. The authors would also like to thank David Carpenter at MITR for the conduct of irradiation, Kory Linton and Quinlan Smith at ORNL for sample preparation, Dr. Alistair Garner for his suggestions on ASTAR experimental conditions and Zefeng Yu from University of Wisconsin for helping with the lift-outs experiments. Prof. Michael Preuss acknowledges funding of his ESRC Leadership Fellowship (EP/I005420/1). This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment. The authors also acknowledge use of facilities and instrumentation supported by NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415).
Table. Oxide thickness after UV exposure in static and flowing conditions with the standard deviation.

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Static</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Exposure</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Thickness (nm)</td>
<td>355±35</td>
<td>259±23</td>
</tr>
</tbody>
</table>
Supplementary Information

- FIB sample liftout
 - liquid nitrogen cryostage on FEI Quanta.
- ASTAR (Nanobeam electron diffraction)
 - TEM: FEI TF30, 300 kV
 - ASTAR: NanoMEGAS
 - Step size: 3 nm
 - Precession: 0.4°
 - Spot size: 7
 - Camera length: 170 mm
 - Exposure time: 10 ms
 - Template excitation error: 0.8
 - Phase reliability threshold: 10
 - Grain orientation threshold: 5°
Table. Number average of oxide grain diameter and aspect ratio measured with ASTAR

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Step size (nm)</th>
<th>Monoclinic ZrO₂</th>
<th>Tetragonal ZrO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diameter (nm)</td>
<td>Aspect ratio</td>
</tr>
<tr>
<td>γ + neutron</td>
<td>3</td>
<td>16.0 ± 0.3</td>
<td>0.514 ± 0.002</td>
</tr>
<tr>
<td>γ</td>
<td>3</td>
<td>15.2 ± 0.3</td>
<td>0.509 ± 0.003</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>14.6 ± 0.2</td>
<td>0.499 ± 0.002</td>
</tr>
</tbody>
</table>
Supplementary Information

Table. Report of neutron/γ irradiation effect to ZrO$_2$ phase formed during corrosion

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Irradiation</th>
<th>Fluence (n/cm2 or g/cm2, or dpa)</th>
<th>t-ZrO$_2$ fraction (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neutron: 8.34×1020 (> 0.1 MeV), γ: 3.1×1021</td>
<td>8.0</td>
<td>This work</td>
</tr>
<tr>
<td>296</td>
<td>Neutron + γ</td>
<td>Neutron: 8.34×1020 (> 0.1 MeV), γ: 3.1×1021</td>
<td>8.0</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>Neutron</td>
<td>4.35×1021 (> 1 MeV)</td>
<td>less</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>Neutron</td>
<td>1-2 dpa</td>
<td>more</td>
<td>[2]</td>
</tr>
<tr>
<td>310</td>
<td>Neutron</td>
<td>4.35×1021 (> 1 MeV)</td>
<td>less</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>Neutron</td>
<td>1-2 dpa</td>
<td>more</td>
<td>[2]</td>
</tr>
</tbody>
</table>