Fatigue and Tensile Properties of Thin Films through Electrical Testing

R. R. Keller and N. Barbosa III
National Institute of Standards and Technology,
Materials Reliability Division
Boulder, Colorado, U.S.A.
http://www.boulder.nist.gov/div853

• Why an Electrical Test?
• Measurement Principle
• Microstructure
• Fatigue Lifetimes
• Strength

Acknowledgements:
NIST Office of Microelectronics Programs
NRC Research Associateship Program
R. Mönig, Forschungszentrum Karlsruhe, Germany
C. A. Volkert, U. Göttingen, Germany
D. T. Read and R. Geiss, NIST
Why Develop an Electrical Test?

- Method for testing “real” structures:
 - 150 nm-wide Cu, Ag (NIST, Sematech)
 - Testing such structures is difficult
 - Special specimen requirements for more common methods usually don’t match actual conditions.

Airgap microprocessor
Courtesy of International Business Machines Corporation.
Unauthorized use not permitted. 5/07.
Measurement Principle: Cyclic Joule Heating

- Four-point probe method
- Low frequency, high alternating currents
- No electromigration
- Controlled joule heating
- Thermal mismatch \Rightarrow cyclic strain!

$\Delta \varepsilon_{\text{thermal}} = \Delta \alpha \Delta T$

(between metal and substrate)

Reference:
What about Non-Conducting Films?

- Use a proximity approach:

Thermal cycling occurs in film that doesn’t carry current.

Not yet demonstrated on non-conductors, though
Temperature from Resistance

- **R vs. T (calibration):**

\[
R(T) = R_0 + \Delta T \frac{dR}{dT}
\]

\[
\Rightarrow \Delta T = \frac{R(T) - R_0}{\frac{dR}{dT}}
\]

\[
\text{V and i vs. time:}
\]

\[
\text{T vs. time:}
\]
Fatigue Lifetime Curves
- Patterned Cu Lines

AC load plus unload cycles to failure

Temperature range, °C

Electroplated, damascene, narrow
PVD (e-beam), wide, uncovered
Fatigue Lifetime Curves

Strain Amplitude

Stress Amplitude
Estimates of Thin Film Ultimate Strength

Ultimate strength:
- Use Basquin equation, where

\[\sigma_a = \frac{\Delta \varepsilon_e E}{2} = \sigma'_f \left(2N_f\right)^b \]

\[\sim \sigma_{UTS} \]

- \(\sigma_a \) = stress amplitude
- \(E \) = Young’s modulus
- \(\Delta \varepsilon_e \) = elastic strain range
- \(\sigma'_f \) = fatigue strength coefficient
 \(\sim \) ultimate strength, \(\sigma_{UTS} \)
- \(b \) = fatigue strength exponent
- \(N_f \) = number of reversals to failure
UTS Measurements on Aluminum

Extrapolate to one reversal to estimate strength

\[\sigma_{UTS}(\text{Al}) = 250 \pm 40 \text{ MPa} \text{ electrical} \]

\[\sigma_{UTS}(\text{Al}) = 239 \pm 4 \text{ MPa} \text{ microtensile} \]

Tests performed on specimens fabricated on same wafer

Approach needs more qualification

N. Barbosa III, R. R. Keller, D. T. Read, R. H. Geiss, and R. P. Vinci

Microstructural Changes

- SEM/EBSD, test for t_1, SEM/EBSD, test for t_2, ...
- Al-1Si, $t = 0.5 \, \mu m$, $w = 3.3 \, \mu m$
- $j_{rms} = 12 \, MA/cm^2 \Rightarrow \Delta T \approx 200 \, ^\circ C$, $\Delta \varepsilon \approx 0.4 \%$
- $t_i = 0, 10, 20, 40, 80, 160, 320, 697 \, s$
Commentary:
Standardization of Small-Scale Tests

• Concern:
 – Different methods usually require different processes
 – For thin films, even slight variations in processing can cause dramatic changes in microstructure (& properties)

• Suggested Action:
 – Include microstructural parameters when reporting results

• Concern:
 – Even with films from same wafer, different specimen needs can change mechanical constraint

• Suggested Action:
 – Exercise caution when comparing one type of test to another
Summary

- An electrical method for applying cyclic thermal strain to patterned thin films on substrates has been developed.

- This approach does not require special specimen geometries.
 - wide range of structure dimensions;
 - buried structures → properties under constraint;

- Test naturally provides fatigue lifetime data

- Ultimate strength of patterned thin films can be estimated through use of modified Basquin equation.

- Test method requires more demonstration and refinement on non-conductors, unusual film patterns, buried structures

Contact information:
bob.keller@nist.gov