Contribution to the Study of Zr1Nb-O Phase Diagram and Numerical Modeling of Steam Oxidation of Zr1Nb Fuel Cladding

M. Négyesi, J. Krejčí, S. Linhart, L. Novotný, A. Přibyl, J. Burda, V. Klouček, J. Sopoušek, J. Adámek

17th International Symposium on Zirconium in the Nuclear Industry

February 3-7, 2013, Taj Krishna, Hyderabad; Hyderabad, Andhra Pradesh, India
Outline

• Introduction
• Main goals
• Material & Methods
• Calculations
• Results & Discussion
 • O distribution
 • Zr1Nb-O
 • Experimental vs. Calculations
• Conclusions
Introduction

• modeling of Zr1Nb HT oxidation:

 • Zr1Nb-O ($C_{\alpha/\alpha+\beta}$ and $C_{\beta/\alpha+\beta}$) is of high importance (CALPHAD)

• experimental: new experimental procedure for assessment of Zr-alloy based on O concentration measurement inside cladding wall after HT oxidation

• assumption: equilibrium conditions are fulfilled at interfaces, redistribution upon quenching is negligible
Introduction

- first tests with Zry-4 with variable H content
 => validation of the procedure
 => influence of H can be treated

- tests with Zr1Nb – troubles

- comparison with CALPHAD agreement
 => new tests

- modeling of the (α+β) region
Main Goals

• determination of Zr rich Zr1Nb-O phase diagram (C\(\alpha\)/\(\alpha\)+\(\beta\) and C\(\beta\)/\(\alpha\)+\(\beta\)) based on O concentration measurements inside quenched Zr1Nb cladding wall after HT isothermal steam oxidation

• comparison of the experimentally determined Zr1Nb-O with CALPHAD calculations

• modeling of double-sided HT steam oxidation (\(\alpha+\beta\))-Zr region for T = 1,100°-1,300° C

• validation of the calculations
Material & Methods

- alloy: modified E110 (improved oxidation properties => lower H uptake!!!)
- 30 mm long tubes (outside diameter: 9.1 mm, wall thickness: 0.7 mm)
- as-received x corroded (non-irradiated) in steam (425 °C/10.7 MPa – 2 ppm H), 10 (~150 wppm H), or 20 µm (~600 wppm H)
- HT oxidation (double-sided) in steam
 - T measured by a thermocouple inside the tube
 - samples quenched in ice water
Material & Methods

- H content measured by vacuum extraction
- microstructure observation – LM & SEM
- microhardness & nanohardness measurements
- O concentration measurement:
 - WDS (Wavelength-Dispersive Spectrometry)
 - SIMS (Secondary Ion Mass Spectrometry)
 - TEA (Thermal Evolution Analysis)
O concentration $C_{\alpha/\alpha+\beta}$

determination of $\alpha/\alpha+\beta$ is not so obvious in some cases – O, Nb profiles, metallography

more measurements, substantial experimental data

O saturation – $\alpha/\alpha+\beta$, $\alpha+\beta/\beta$ solution
Nanohardness vs. O content

- Nanohardness depends strongly on O concentration.
- The relation is equal for both Zry-4 & Zr1Nb.
- Nanohardness and O concentration at the metal/oxide phase boundary (in the metal) are also involved.
- Nanohardness measurement followed with advantage of higher throughput.
O ceiling in β-Zr

- SIMS & TEA - determination of $C_{\beta/\alpha+\beta}$ (WDS only for higher T)
 - larger analyzed volume
- assumption: O solubility limit in β is achieved and exceeded at certain exposure time upon HT oxidation approx. in whole at the same time
- HVM - determination of O saturation time
- SIMS & TEA results - satisfactory agreement with microhardness
- $C_{\beta/\alpha+\beta}$ can be then estimated
- LM confirm the conclusions
Zr1Nb-O

- CALPHAD - database „Zr_BASE“ (involving phases from publicly accessible sources without experiments)

- good agreement between the experimental results and calculated phase diagram

- comparison with other authors:
Numerical calculations - JKOX

2nd Fick Law & mass balance equation, satisfied on each interface:

\[\frac{\partial C(r,t)}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r J_r \right) \quad \quad J_r = -D(T) \frac{\partial C(r,t)}{\partial r} \]

- 1D finite difference method (implicit solution) - code predicts the double-sided oxidation \(\geq 1100 \, ^\circ\text{C} \)
- GB diffusion and diffusion of Nb are neglected
- \(\alpha\)-Zr(O) incursions are treated as an additional layer - \((\alpha+\beta)\)-Zr
- O concentrations at phase boundaries in \((\alpha+\beta)\)-Zr & O diffusivity are chosen based on experimental results
- Zr-O & Zr1Nb-O phase diagram are used
- diffusivities depend only on T:

\[k = 1.987 \, \text{cal/mol/K} \]

\[D_{\alpha} = \begin{cases} 0.127 \times e^{-35140/kT} & \text{if } \alpha-Zr(D) \\ D_{\alpha} & \text{if } (\alpha+\beta)-Zr, \text{ oxide, prior } \beta-Zr \end{cases} \]
Reaction layers development

- good agreement for all reaction layers - until O saturation
- measured oxide layers are slightly underestimated compared to predicted, mainly for higher thicknesses
- higher experimental scatter for α-Zr(O) & (α+β)-Zr
O pick-up in β-Zr

- satisfactory agreement
- code under-predicts experimental results
- possible explanations:
 - experimental results – O concentrations measured in prior β might be elevated by innermost α-Zr(O) incursions
 - no α-Zr(O) grains precipitation modeled (O saturation) - misfit for higher exposure times
Conclusions

• Zr1Nb-O was experimentally assessed employing O concentration measurements inside quenched cladding wall after HT steam oxidation.

• experimentally determined Zr1Nb-O was compared to CALPHAD calculations with a satisfactory agreement.

• proposed experimental procedure provides good estimation of the Zr1Nb-O phase diagram and can be used for higher H content.

• new diffusion model JKOX has been created using Zr1Nb high-temperature oxidation data, including O saturation.
Conclusions

• numerical calculations were compared to experimental results with satisfactory agreement

• estimated Zr1Nb-O phase diagram may be used for models predicting the oxidation behavior upon HT oxidation
Acknowledgement

Authors wish to thank all co-authors, J. Sustr for metallographic sections, and O. Blahova for nanohardness measurements.
THANK YOU FOR YOUR ATTENTION!!!

26/02/2013

M. Negyesi, Zr1Nb-0 & Its Application to Modeling of the Cladding Oxidation, 17th International Symposium on Zirconium in the Nuclear Industry