Investigation of the interaction between gliding dislocations and irradiation induced loops in zirconium alloys

Industrial background

Zr-alloys: Cladding tube of the nuclear fuel in PWR
- First containment barrier against the dissemination of radioactive elements

► Necessity to understand and predict the effects of neutron radiation on the microstructure and on the mechanical properties.

Effect of irradiation on the deformation mechanisms

Basal channeling (easy slip system after irradiation)

(Transverse tensile test and internal pressure tests at 350°C on a recrystallized Zr-4 cladding tube)

Dislocation glide in prismatic plane mainly
- Reversal of the easy slip system!
- Dislocation channeling mechanism!

► Why is there such a change of the easy slip system?
► How does the dislocation channeling mechanism operate in irradiated zirconium alloys?

Prismatic channeling (when basal slip not well orientated)

(Axial tensile test at 350°C on a recrystallized Zr alloy cladding)

Dislocation channeling in the basal plane only.

In situ TEM observations of dislocation – loop interaction on ion irradiated specimens

Material: recrystallized Zr-4 rolled sheet, grain size 5 μm

Ion irradiation:
- Ions: Zr +
- ARAMIS facility at CSNSM/IN2P3-Orsay
- Irradiation dose = 0.5 dpa (or 1 dpa)
- Temperature = 500°C (or 350°C)
- Energy = 2 MeV and 0.6 MeV

Experimental results after 1 dpa at 350°C

- Clearing of loops by edge dislocations gliding in the prismatic plane in the case of a high loop density (1 dpa at 350°C)
- Creation of cleared bands in the prismatic plane

Experimental results after 0.5 dpa at 500°C

- Annihilation of a loop incorporated as a super-jog in an edge dislocation gliding in the prismatic plane in the case of a low loop density (0.5 dpa at 500°C)

TEM observations after mechanical testing on neutron irradiated specimens

- Basal channeling (easy slip system after irradiation)
- Prismatic channeling (when basal slip not well orientated)
- Only few remaining loops in the channel
- Nearly full clearing in the basal plane
- Easy basal channeling

In situ TEM observations of dislocation – loop interaction on ion irradiated specimens

- Ion irradiation: recrystallized Zr-4 rolled sheet, grain size 5 μm
- ARAMIS facility at CSNSM/IN2P3-Orsay
- Irradiation dose = 0.5 dpa (or 1 dpa)
- Temperature = 500°C (or 350°C)
- Energy = 2 MeV and 0.6 MeV

- TEM observation after in situ testing