ZIRLO™ Irradiation Creep Stress Dependence in Compression and Tension
16th ASTM Zirconium Symposium
Chengdu, China, 9-12 May 2010

John Foster and Rita Baranwal
Westinghouse Electric Company LLC
Columbia, SC, USA
fosterjp@westinghouse.com
INTRODUCTION

- Data are from the Vogtle Unit 2 PWR Creep/Growth Program
- Results for SRA ZIRLO show:
 - In-reactor creep compliance is the same in tension and compression
 - If total in-reactor strain is split into growth and creep components:
 - Deviatoric hoop stress is the driving force for irradiation creep
 - Irradiation creep in tension is the same as compression
EXPERIMENTAL
Test Samples

• SRA ZIRLO
• 168 mm long
• Samples are either He pressurized or open on both sides to water
Irradiation Schedule

<table>
<thead>
<tr>
<th>Cycle</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall 02</td>
<td>Spring 04</td>
<td>Fall 05</td>
<td>Spring 07</td>
<td>Fall 08</td>
<td>Spring 10</td>
</tr>
</tbody>
</table>

Assembly

<table>
<thead>
<tr>
<th>Assembly</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x--</td>
<td>x-</td>
<td>x-</td>
<td>x-</td>
<td>x-</td>
<td>x-</td>
</tr>
</tbody>
</table>

4
Test Overview

- Test samples are irradiated in guide thimble positions using segmented insert rods
 - Test samples do not contain fuel
 - Samples are placed in outer row guide thimble positions
- Six assemblies
- Samples discharged for measurement are not reinserted
- Disassemble samples by shearing after the refueling outage in the pool and shipped to Hot Cell for examination
 - Measured by laser micrometer
Irradiation Conditions

- Data are available for 1 and 2 cycles (~17 months irradiation/cycle)
 - Temperature range 300-318 °C
 - No axial or radial fast flux gradient
 - Confirmed with retrospective dosimetry measurements
 - Cycle-to-cycle fast fluxes are approximately constant
 - Range between $9.3-9.7 \times 10^{13}$ n/cm2-sec E>1 MeV
Stress Analysis

- σ_θ, σ_r and σ_z stresses calculated with the thick-wall equations
- Deviatoric hoop stress,
 \[
 \sigma_\theta = \sigma_\theta(\text{deviatoric}) + \sigma(\text{hydrostatic})
 \]
 \[
 \sigma(\text{hydrostatic}) = (\sigma_\theta + \sigma_r + \sigma_z)/3
 \]
 - Deviatoric stress results in plastic strain (creep)
 - Hydrostatic stress does not result in plastic strain (creep)
Sample Design

SOLID CYLINDER INTERNAL MANDREL

- Black = Sample
- White = He Gas
- Red = Internal Mandrel

TUBE INTERNAL MANDREL

- Solid cylinder internal mandrel generates more heat than the tube internal mandrel
RESULTS and DISCUSSION
Gamma Heat Generation Rate [1/2]

Total Dia. Strain vs. Deviatoric Hoop Stress for Gamma Heat Gen. Rate of 1.60×10^6 Btu/h-ft3
SRA STD ZIRLO, Vogtle Unit 2 Cycle 10 (Test Assembly A1)

- Linear behavior
- Calculated regression
 R^2 coefficient for different γ-heat rates
- Fit associated with highest R^2 coefficient
Gamma Heat Generation Rate

Regression R^2 Coefficient versus the Gamma Heat Generation Rate
SRA STD ZIRLO, Vogtle 2 Cycle 10 (Test Assembly A1)

- Determined gamma heat generation rate
- Calculated internal pressures and stresses using the gamma heat generation rate
RESULTS and DISCUSSION
In-Reacto r Creep Compliance (1 Cycle, Cycle 10) [1/3]

- Linear behavior
- In-reactor creep compliance (slope of the line) is the same in tension & compression
• Linear behavior

• In-reactor creep compliance (slope of the line) is the same in tension & compression

• Same $\Delta D/D_0$ vs. $\sigma_{\theta}\text{ (dev.)}$ behavior as Cycle 10 data
In-Reactor Creep Compliance (2 Cycles, Cycles 10-11)

[3/3]

Total Dia. Strain vs. Deviatoric Hoop Stress for Gamma Heat Gen. Rate of 1.20×10^6 Btu/h-ft3
SRA STD ZIRLO, Vogtle Unit 2 Cycles 10 & 11 (Test Assembly A3)

- Linear behavior
- In-reactor creep compliance (slope of the line) is the same in tension & compression
Split Total In-Reactor Strain into Growth & Creep Components

$$\Delta D/D_o(\text{creep}) = \Delta D/D_o(\text{measured total}) - \Delta D/D_o(\text{growth})$$
Irradiation Growth

- Linear behavior
- Data includes samples open to water on both sides
- Determined irradiation growth strain by regression analysis
Irradiation Creep Hoop Stress Correlation

- Linear behavior
- Between -16 and 0 MPa, σ_θ is negative & $\Delta D/D_o$ is positive (the red line) – physically unrealistic
- σ_θ is not the correct driving force for irradiation creep
Irradiation Creep Deviatoric Hoop Stress Correlation (1 Cycle/Cycle 10)

- Linear behavior
- Data pass through the origin
- Deviatoric σ_θ is the driving force for irradiation creep
- Tension = compression
Irradiation Creep Deviatoric Hoop Stress Correlation (1 Cycle/Cycle 11)

- Linear behavior
- Data pass through the origin
- Deviatoric σ_θ is the driving force for irradiation creep
- $\Delta D/D_o$ vs. σ_θ(dev.) same as Cycle 10 data
Irradiation Creep Deviatoric Hoop Stress Correlation (2 Cycle/Cycles 10-11)

- Linear behavior
- Data pass through the origin
- Deviatoric σ_θ is the driving force for irradiation creep
- Tension = compression
CONCLUSIONS

• For SRA ZIRLO,
 – In-reactor creep compliance is the same in tension and compression
 – If total in-reactor strain is split into growth and creep components:
 – Deviatoric hoop stress is the driving force for irradiation creep
 – Irradiation creep in tension is the same as compression
Thank you for your attention
PUBLICATIONS

- Initial 1 cycle results were reported in 15th International Symposium of Zirconium in the Nuclear Industry
- Initial 1 cycle dosimetry results were reported in Proceedings of the 13th International Symposium on Reactor Dosimetry