Scope of Committee C28

The promotion of knowledge, stimulation of research and development of standards (classifications, specifications, nomenclature, test methods, guides, and practices) relating to processing, properties, characterization, and performance of advanced ceramic materials.

This committee works in concert with other technical committees (e.g., D30 "Composite Materials," E07 "Non Destructive Testing," E08 "Fatigue and Fracture," E28 "Mechanical Testing," F04 "Medical and Surgical Materials and Devices", and G02 "Wear and Erosion") and other national and international organizations having mutual or related interests.

What Committee C28 Does

Committee C28 develops and maintains standards for monolithic and composite advanced ceramics. An advanced ceramic is a highly-engineered, high-performance predominately non-metallic, inorganic, ceramic material having specific functional attributes. The C28 standards cover methods for testing bulk and constituent (powders, fibres, etc.) properties, thermal and physical properties, strengths and strength distributions, and performance under varying environmental, thermal, and mechanical conditions. The scope of application of the methods ranges from quality control through design data generation.

The Committee's primary objective is the development of technically rigorous standards which are accessible to the general industrial laboratory and consequently are widely accepted and used in the design, production, and utilization of advanced ceramics.

While the committee's roots are in energy-related industries and programs, C28 supports the needs of automotive, aerospace, electronic, medical and other industries requiring advanced ceramics. Some specific applications include nano-ceramics, bio-ceramics, coatings, electronics, sensors/actuators, porous substrates and fuel cells. C28 actively pursues standards development to support these emerging applications.

Committee C28 coordinates its work with other organizations with mutual interests in advanced ceramics. The membership represents an international group of people interested in furthering advanced ceramic technology.

In addition to standards development, C28 sponsors symposia providing a forum for the timely transfer of technical information relevant to the design, analysis, processing, fabrication, and characterization of monolithic and composite advanced ceramics. Special workshops and technical presentations are often held to identify specific industrial needs and support the technical development of new standards.

The Committee meets twice a year with an on-site meeting and a Web-teleconference. The Committee is self-regulated by committee-approved by-laws under the auspices of ASTM International.

<table>
<thead>
<tr>
<th>C28.01</th>
<th>C28.03</th>
<th>C28.04</th>
<th>C28.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties and Reliability</td>
<td>Physical Properties and NDE</td>
<td>Ceramic Applications</td>
<td>Ceramic Matrix Composites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C28.90</th>
<th>C28.91</th>
<th>C28.92</th>
<th>C28.93</th>
<th>C28.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive</td>
<td>Editorial and Nomenclature</td>
<td>Education / Outreach</td>
<td>Awards</td>
<td>Long Range Planning</td>
</tr>
</tbody>
</table>
Committee C28 Advanced Ceramic Standards

Monolithics

- C 1161 Flexural Strength (RT)
- C 1211 Flexural Strength (HT)
- C 1368 Slow Crack Growth (RT, Dyn Fatigue)
- C 1465 Slow Crack Growth (HT, Fatigue)
- C 1576 Slow Crack Growth (RT, Stress Rupture)
- C 1684 Flexural Strength (Rods)
- C 1834 Slow Crack Growth (HT, Stress Rupture)

Composites, Coatings, Porous Ceramics

- C 1275 CMC Tensile Strength (RT)
- C 1337 CMC Creep, Creep Rupture
- C 1359 CMC Tensile Strength (HT)
- C 1360 CMC Cyclic Fatigue
- C 1773 CMC Tube Axial Tensile (RT)

- C 1292 CMC Shear Strength (RT)
- C 1425 CMC Shear Strength (HT)
- C 1469 CMC Joint Strength

- C 1358 CMC Compression Strength
- C 1468 CMC Tensile Strength (Trans Thick)
- C 1674 Honeycomb Flex Strength

- C 1783 Guide for Specs SiC-SiC CMCs
- C 1793 Guide for Specs C-C Composites
- C 1835 Classification for SiC-SiC CMC
- C 1836 Classification for C-C Composites

Powders

- C 1070 Particle Size, Laser Light
- C 1274 Particle Size, BET
- C 1282 Particle Size, Centrifugal Sed
- C 1730 Particle Size Distribution, X-Ray Gravity Sedimentation

- C 1494 C, N, O in silicon nitride

NDE and Design

- C 1212 Seeded Voids
- C 1336 Seeded Inclusions
- C 1494 C, N, O in silicon nitride

Terms, Workshops, Education

- C 1495 Grinding
- C 1525 Thermal Shock
- C 1424 Compression Strength (RT)
- C 1322 Fractography
- C 1326 Knoop Hardness
- C 1327 Vickers Hardness
- C 1499 Biaxial Strength (RT)
- C 1259 Elastic Modulus - impulse
- C 1470 Thermal Guide

Subcommittees

- C28.01 Mech. Prop. + Reliability
- C28.03 Physical Prop. + NDE
- C28.04 Applications
- C28.07 Ceramic Matrix Composites
- C28.91 Terminology

Graphical illustration of standards under the jurisdiction of Committee C28
(Note: CXXXX refers to a specific standard, STPXXXX refers to Standard Technical Publication)

ASTM C28 standards are found in Vol. 15.01 of the Annual Book of ASTM Standards

01-2018
C28.01 Chair: Michael Jenkins
Bothell Eng & Science Technologies, Bothell, WA
e-mail: jenkinsm@csufresno.edu

C28.01 Scope:
Develops standards for mechanical properties and reliability (short term and long term) of monolithic advanced ceramics in a number of areas including flexural strength, tensile strength, compressive strength, cyclic fatigue, creep and creep rupture, hardness, and fracture toughness.

C28.01 Standards:
- C1161-13 (90) Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
- C1198-13 (91) Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Sonic Resonance
- C1211-13 (92) Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperature
- C1239-13(93) Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics
- C1259-15 (94) Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration
- C1273-15 (94) Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures
- C1291-16 (95) Test Method for Elevated Temperature Tensile Creep Strain, Creep Strain Rate, and Creep Time-to-Failure for Advanced Monolithic Ceramics
- C1322-15 (96) Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics
- C1326-13 (96) Test Method for Knoop Indentation Hardness of Advanced Ceramics
- C1361-15 (96) Practice for Constant-Amplitude, Axial, Tension-Tension Cyclic Fatigue of Advanced Ceramics at Ambient Temperatures
- C1366-13 (97) Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures
- C1369-10 (97) Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature
- C1421-16 (99) Test Methods for the Determination of Fracture Toughness of Advanced Ceramics
- C1424-15 (99) Test Method for Compressive Strength of Monolithic Advanced Ceramics at Ambient Temperatures
- C1465-13 (00) Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Rate Flexural Testing at Elevated Temperature
- C1495-16 (01) Test Method for Effect of Surface Grinding on Flexure Strength of Advanced Ceramics
- C1499-13 (02) Test Method for Monotonic Equibiaxial Flexural Strength Testing of Advanced Ceramics at Ambient Temperature
- C1525-12 (02) Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water Quenching
- C1576-13 (09) Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Ambient Temperature
- C1683-15 (15) Practice for Size Scaling of Tensile Strengths Using Weibull Statistics for Advanced Ceramics
- C1684-13 (13) Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature - Cylindrical Rods

C28.03 Chair: Matthias Thommes
Quantachrome Instruments, Boynton Beach, Florida
e-mail: matthias.thommes@quantachrome.com

C28.03 Scope:
Develops standards for physical, chemical, microstructural, and non-destructive characterization of powder and bulk advanced ceramics.

C28.03 Standards:
- C1070-14 (01) Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering
- C1175-10 (91) Guide to Test Methods for Nondestructive Testing of Advanced Ceramics
- C1212-15 (92) Practice for Fabricating Ceramic Reference Specimens Containing Seeded Voids
- C1274-12 (94) Test Method for Advanced Ceramic Specific Surface Area by Physical Adsorption
- C1282-12 (99) Withdrawn in 2014 Test Method for Determining the Particle Size Distribution of Advanced Ceramics by Centrifugal Photocentrifugation
- C1331-12 (96) Jurisdiction changed to E07 Nondestructive Testing in 2015 Practice for Measuring Ultrasonic Velocity in Advanced Ceramics with the Broadband Pulse-Echo Cross-Correlation Method
- C1332-13 (96) Jurisdiction changed to E07 Nondestructive Testing in 2015 Test Method for Measurement of Ultrasonic Attenuation Coefficients of Advanced Ceramics by the Pulse-Echo Contact Technique
- C1336-14 (96) Practice for Fabricating Non-Oxide Ceramic Reference Specimens Containing Seeded Inclusions
- C1470-13 (00) Guide for Testing the Thermal Properties of Advanced Ceramics
- C1494-13 (01) Test Method for Determination of Mass Fraction of Carbon, Nitrogen, and Oxygen in Silicon Nitride Powder
- C1678-15 (10) Standard Practice for Fractographic Analysis of Fracture Mirror Sizes in Ceramics and Glasses
- C1730-17 (17) Standard Test Method for Particle Size Distribution of Advanced Ceramics by X-Ray Monitoring of Gravity Sedimentation

C28.04 Chair: Randy Stafford
Cummins Inc., Columbus, IN
e-mail: randy.j.stafford@cummins.com

C28.04 Scope:
Develops standards (including guides, specifications, practices, test methods) for various engineering applications of advanced ceramics, such as nanoceramics, coatings, electrodes, porous ceramics, fuel cells, armor, sensors/actuators, and thermal systems.

C28.04 Standards:
- C1323-16 (96) Test Method for Ultimate Strength of Advanced Ceramics with Diametrically Compressed C-Ring Specimens at Ambient Temperature
- C1624-15 (05) Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing
- C1674-11 (11) Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
C28.07 Ceramic Matrix Composites
C28.07 Chair: Andrew Wereszczak
Oak Ridge National Laboratory, Oak Ridge, TN
Nuclear Material Science and Technology Group
e-mail: wereszczakaa@ornl.gov

C28.07 Scope:
Develops standards for determination of the thermo-mechanical properties and performance of ceramic matrix composites including tension, compression, shear, flexure, cyclic fatigue, creep/creep rupture, ceramic fibers, interfacial properties, thermo-mechanical fatigue, environmental effects, and structural/component testing.

C28.07 Standards:
- C1275-15 (94) Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section at Ambient Temperatures
- C1292-16 (95) Test Method for Shear Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures
- C1337-15 (96) Test Method for Creep and Creep Rupture of Continuous Fiber-Reinforced Ceramic Composites under Tensile Loading at Elevated Temperature
- C1341-13 (96) Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites
- C1358-13 (96) Test Method for Monotonic Compressive Strength Testing of Continuous Fiber- Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Specimens at Ambient Temperatures
- C1359-13 (96) Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Specimens at Elevated Temperatures
- C1360-15 (96) Practice for Constant-Amplitude, Axial, Tension-Tension Cyclic Fatigue of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures
- C1425-13 (99) Test Method for Interlaminar Shear Strength of 1-D and 2-D CFCCs at Elevated Temperatures
- C1468-13 (00) Test Method for Transtickness Tensile Strength of Continuous Fiber- Reinforced Advanced Ceramics at Ambient Temperatures
- C1469-15 (00) Test Method for Shear Strength of Joints of Advanced Ceramics at Ambient Temperature
- C1557-14 (03) Test Method for Tensile Strength and Young’s Modulus Fibers
- C1773-13 (13) Test Method for Monotonic Axial Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramic Tubular Test Specimens at Ambient Temperature
- C1835-16 (16) Classification for Fiber Reinforced Silicon Carbide-Silicon Carbide (SiC-SiC) Composite Structures
- C1836-16 (16) Classification for Fiber Reinforced Carbon-Carbon Composite Structures
- C1863-18 (18) Test Method for Hoop Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramic Composite Tubular Test Specimens at Ambient Temperature Using Direct Pressurization
- C1869-18 (18) Test Method for Open-Hole Tensile Strength of Fiber-Reinforced Advanced Ceramic Composites

C28.90 Executive Subcommittee
C28.90 Chair: Tony Thornton
Micromeritics, Norcross, GA
e-mail: tony.thornton@micromeritics.com

C28.90 Scope:
Manages administrative matters of main committee C28 through its membership comprised of the committee and subcommittee officers of C28.

C28.91 Nomenclature and Editorial
C28.91 Chair: Jonathan Salem
NASA-Glenn Research Center, Cleveland, OH
e-mail: Jonathan.A.Salem@grc.nasa.gov

C28.91 Scope:
Compiles nomenclature and terminology used in the various standards of C28.

C28.91 Standards:
- C1145-13 (91) Terminology on Advanced Ceramics
- C1286-94 Withdrawn in 2002 Classification for Adv Ceramics

C28.92 Education and Outreach
C28.92 Chair: Jonathan Salem
NASA-Glenn Research Center, Cleveland, OH
e-mail: Jonathan.A.Salem@grc.nasa.gov

C28.92 Scope:
Develops and supports efforts for education and outreach for the C28 committee.

C28.92 Documents:
Advanced Ceramic Sentinel

C28.93 Awards
C28.93 Chair: Jonathan Salem
NASA-Glenn Research Center, Cleveland, OH
e-mail: Jonathan.A.Salem@grc.nasa.gov

C28.93 Scope:
Accepts/acts on nominations for various awards

C28.95 Long Range Planning
C28.95 Chair: Michael Jenkins
Bothell Eng & Science Technologies, Bothell, WA
e-mail: jenkinsm@csufresno.edu

C28.95 Scope:
Proposes, facilitates and promotes long range planning activities consistent with the mission, goals and objectives of the Committee and its subcommittees.

Documents:
Committee C28 Strategic Plan

Symposia Publications
STP 1201 Life Prediction Methodologies and Data for Ceramic Materials
STP 1309 Thermal and Mechanical Test Methods and Behavior of Continuous-Fiber Ceramic Composites
STP 1392 Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components
STP 1409 Fracture Resistance Testing of Monolithic and Composite Brittle Materials

Future C28 Meetings
2018 – Wednesday, 18 July
webX/Teleconference; Contact Staff Manager for details
2019 – Saturday/Sunday, 26/27 January
In conjunction w/ ACerS 43rd ICACC, Daytona Beach, FL
Main Committee Officers (2018 and 2019)

Chair
Tony W. Thornton
Micromeritics
4356 Communications Drive,
Norcross, GA 30093 U.S.A.
Tel: 770-662-3656, FAX: 770-662-3696,
e-mail: tony.thornton@micromeritics.com

Vice Chair
Michael G. Jenkins
Bothell Engineering & Science Technologies, Inc.
17815-93rd Pl NE
Bothell, WA 98011 U.S.A.
Tel: 425-876-7061, FAX: N/A
e-mail: jenkinsm@csufresno.edu

Recording Secretary
Amber Powell
Cincinnati Testing Laboratories
Apt 110, 4590 Colony Factory Lane
Cincinnati, OH 45209 U.S.A.
Tel: 573-286-5843, FAX:
e-mail: apowell@cintestlabs.com

Membership Secretary
Jonathan A. Salem
NASA Glenn Research Center
21000 Brookpark Road / MS 49-7
Cleveland, OH 44135 U.S.A.
Tel: 440-724-5070, FAX: 216-977-7051
e-mail: jonathan.a.salem@nasa.gov

Members at Large

Joseph V. Atria
Almatis, Inc
501 West Park Road
Leetsdale, PA 15056
Tel: 412-255168, FAX:
e-mail: jveatria@almatis.com

Leon Chuck
Pressbox Photo LLC
228 Triangle Avenue
Oakwood, OH 45419 U.S.A.
Tel: 937-304-8478; FAX:
e-mail: leon.chuck@sbcglobal.net

Stephen F. Duffy
Cleveland State University
2997 Sussex Court
Stow, OH, 44135 U.S.A.
Tel: 330-388-0511, FAX: 918-513-6950
e-mail: duffy@crtechnologies.com

Joseph Homeny
Edw Orton Jr Ceramic Foundation
6991 Old 3C Highway
Westerville, Oh 43082 U.S.A.
Tel: 614-818-1323, FAX: 614-895-5610
e-mail: Homeny@Ortonceramic.com

ASTM Administration

C28 Staff Manager -- Jimmy Farrell
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959 U.S.A.
Tel: (610) 832-9661, FAX: (610) 832-9666
e-mail: jfarrell@astm.org

Administrative Assistant -- Jamie Huffnagle
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959 U.S.A.
Tel: 610-832-9712, FAX: 610-832-9666
e-mail: jhuffnag@astm.org

Editor -- Jennifer Congiliando
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959 U.S.A.
Tel: 610-832-9705, FAX: 610-832-9666
e-mail: jcongiliando@astm.org