From Science to Engineering Practice - Evolving a Structural Integrity Framework

ASTM 2016 Fatigue Lecture
Jerzy Komorowski

with David Hoeppner and Min Liao
To my HOListic Structural Integrity Process (HOLSIP) co-conspirators
Content

- HOLSIP - why “conspiracy”?
- About NRC and our collaborators
- We are still learning the hard way
- Engineering and Science
- HOLSIP the framework
- Selected Applications
- Future – the unfinished business
HOLSIP – why ‘conspiracy’
“Conspiracy” – collaboration of boondoggle bunch

• In early 2000’s word ‘holistic’ was associated with alternative (not science based) medicine rather than with:
 • *Holistic = Emphasizing the importance of the whole and the interdependence of its parts.*
 • USAF was no longer interested in funding the core members: U. Utah (D. Hoeppner), APES Inc. (C. Brooks) and NRC (JPK and N. Bellinger)

• 2002 The series of annual HOLSIP workshops was launched = boondoggles

• 2016 – February 21-26 – 15th HOLSIP workshop was held at Snowbird Utah.
NRC and collaborators
HOLSIP workshop attendees

- Australia, North America, Asia (Japan), Europe
- Air forces (5), Industry (OEM 4, MRO, other), Airworthiness, Safety, RTO (5), University (6)
- Research, Technology Development, Product Development, Sustainment (MRO),

Aircraft airframes and engines, pipelines, civil structures
About NRC

- Approx. $900M budget
- **3,670** employees and **575** volunteer and independent visitors
- Industrial Research Assistance Program (IRAP) supports a variety of disciplines and services in support of industry
- Research facilities provide strategic research & development and technical services to national and international clients
Facilities – $500M Research Infrastructure

- **Aerodynamics**
- **Structures, Materials and Manufacturing**
- **Flight Research**
- **Gas Turbines**
analytical processes / engineered solutions → AP/ES → 🐒

Fatigue & Fracture
AP/ES has diverse expertise in disciplines such as damage tolerance, crack nucleation, durability, corrosion fatigue, holistic life assessments, spectrum analysis and generation, and mechanical testing.

Process Development and Automation
Software developers with extensive engineering experience can create custom solutions to meet a customers' needs. Automating repetitive analytical tasks, parsing and evaluating results, linking and porting software, and developing specialized programs, macros, and reports are all day-to-day examples.

Stress & Failure Analyses
Experienced aircraft stress analysts, finite-element modeling specialists, microstructure experts, and unique fractography capabilities get to the root causes of your engineering problems.

Service Life Assessments
Using advanced and existing technologies, AP/ES and strategic partners can provide customers with criticality overviews and specific structural integrity evaluations tailored to their unique structural systems and fleets. Assessments address the impacts of maintenance and inspection programs on cost, fleet readiness, and structural safety.
We are still learning the hard way
No-Life Paradigm

- Between May 1953 and April 1954, three Comet aircraft disintegrated in flight, after which all Comet 1 aircraft were withdrawn from service.
- Afterwards a full-scale test was carried out in which the fuselage was submerged in water to simulate the pressurization cycles.
- From the resulting cracks, the relevant fuselage piece of a failed aircraft was recovered from the ocean floor, which showed the "unmistakable fingerprint of fatigue".
- Fatigue cracks due to the stress concentration at nearly-square rear window cutouts caused failures.
Safe-Life Paradigm

- RB211 SITUATION ON THE LOCKHEED TRISTAR (1972, 1973)
 - Two in-flight first stage fan discs burst. One in Dec., 1972 (six days before EA 901), second Jan. 12, 1973-TWA 28
 - No fatalities, but all IMI 685 fan and compressor discs replaced by RR and Lockheed.

RB211, L1011-TWA 28
Safe-Life Paradigm

• UA 232-DC10 ACCIDENT SIOUX CITY, IOWA (1989)
 • In flight compressor fan disc failure of CF6-6 engine. 113 fatalities. 171 survived.
 • Previous spool failures had occurred (different Ti alloy but same basic problem).
 • Sister discs were cracked.

Photograph taken of the aircraft on final approach to Sioux City. Note the missing tail-cone and damage to the horizontal stabilizer.
Damage Tolerance (Metals)

- ALOHA AIRLINES 243 ACCIDENT (1988)
 - The aircraft lost 1/3 of its crown due to a stress fracture while cruising at 24,000 feet. 1 fatality.
Damage Tolerance (Metals)

- CAUSE OF SOUTHWEST B733 NEAR YUMA (2011)
 - MISALIGNED rivet holes where two parts of the fuselage were assembled.
 - Wear-induced cracks
 - Riveted joints that failed were not extensively checked because they were thought not to be susceptible to fatigue.

Taken from various sources
Damage Tolerance (Composites)

• AIR TRANSAT AIRBUS A310 C-GPAT
 • On 6th of March, 2005, over international waters a rudder detached from the vertical stabilizer.
 • Rudder is an all-composite structure consisting of two sandwich panels, hinge side spar, top and bottom ribs.
 • “No-Growth” design
Engineering and Science
Engineering is not science, it is art

- Practitioners do not see themselves as creative artists pushing the boundaries of possibility

Aircraft Art, Forte di Belvedere
Florence, Italy
Damage Tolerance (Composites)

- Must show catastrophic failure due to fatigue, environmental effects, manufacturing defects, or accidental damage will be avoided throughout the operational life of the aircraft.
- Extent of analysis or tests will depend upon applicable previous fatigue/damage tolerant designs, construction, tests, and service experience on similar structures. (When will this happen given the tailored design of composite structures)

Tests form the basis for validating no-growth approach to damage tolerance requirements but assumes that all damage modes are known.

Taken from Advisory Circular No: 20-107B
Composites - fatigue

• No-life AGAIN!!!!?

• Service experience
 • Low strain levels (<4,000με)
 • Older materials
 • Conclusion – fatigue resistant materials

• Lab experience
 • Small coupons
 • Specimen geometry – edge problem
 • Long period without evident damage – low number of cycles to failure when damage can be observed

• Large transport composite wing weight saving requires higher strains closer to 6,000 με?
• Physics based models (degradation, strength, failure) are still needed and not yet available.

NASA-Led Consortium Will Bring Science To Art Of Composites

Aviation Week & Space Technology
Graham Warwick
Mon, 2015-04-27 04:00
Metal fatigue more unfinished business

• Early stages not well modeled:
 • dichotomy between Durability and DT
 • EIFS problematic, post-diction
 • “initiation” concept
• Environments not considered
NRC Aerospace Aging Aircraft Specimen Library
Lap Joint Specimen Teardown

47-18A, Boeing 727-200 N4747, S4R - BS1020

- Upper rivet row inner skin, faying surface.
- Dark areas contain ~10% thickness loss maximum.
- Cracks in the areas adjacent to maximum corrosion pillowing.
Fatigue and Corrosion Pillowing

Fatigue striations along crack front

Intergranular fracture

Pillowing cracks found in 10 different a/c from 3 manufactures

0.065 inch
Effect of Corrosion on Stress

- Finite element models generated with and without thickness loss.

- Results show strains significantly increase due to pillowing as compared to thickness loss effect.

![Graph showing the effect of corrosion on stress with categories: No corrosion, Thickness loss, Pillowing, Pillowing + thickness loss.](image-url)
HOLSIP the framework
In the absence of physics based failure models

- Each time new material is introduced – new black box to build structures from
- Old approaches to support SI – bound by assumptions known to retired practitioners and typically based on simple strain analysis
- Start again with each generation – typically only one new platform designed in 20 years

Holistic:

emphasizing the importance of the whole and the interdependence of its parts
Holistic structural integrity Process (HOLSIP)

P1: Nucleation
- As-manufactured, IDS
- Crack/corrosion
- /fretting nucleation
- Non-continuum mech.
- Durability

P2: Short Crack
- Short cracks
- Damage interaction
- EPFM/LEFM
- Damage tolerant
- Special NDI

P3: Long Crack
- MSD interaction
- LEFM
- NDI detectable
- Repairable

P4: Instability
- Fract. toughness
- Residual strength
- WFD/MSD
- LEFM/EPFM

Holistic life (with all intrinsic/extrinsic factors)

HOLSIP framework: to currently augment *safe-life* and *damage tolerant* paradigms with the *ultimate* goal to evolve HOLSIP into a new paradigm for both design and sustainment engineering.

Key elements: physics & probabilistic models, loads monitoring, environmental effects, advanced NDE/SHM, and risk assessment.

Developers: NRC, APES, U. Utah, Tri/Austin, AFRL/USAF, JAXA …
Holistic structural integrity Process (HOLSIP)

Precise communication

*HOLSIP terminology
Major HOLSIP Related Tasks at NRC

- **Physics modeling**: crack nucleation, short crack, environment/corrosion composite age degradation, new manufacturing, new material
- **Residual stress** measuring/modeling, new joining tech.
- Structural health monitoring (SHM) and test integration
- **Advanced NDI** and modeling
- **Risk/reliability** toolbox (including MSD/WFD)
- **Certification/qualification** testing

Risk/reliability quantified total life assessment considering both cyclic and environment related loading
Initial Discontinuity States (IDS): Initial population of discontinuities that are in a structure made of a given material as it was manufactured in a given geometric form.

IDS examples: particles, pores, machining marks/scratches.
Correlation between overall IDS distribution and its fatigue subsets

Extreme value model: IDS fatigue subset is in the right tail of the overall IDS distribution, which can be determined using the extreme value theory in the highest (95%) stress region, ex. Lognormal (overall IDS) → Frechet (IDS subset).

\[
F_S(x) = \exp\left[-\left(\frac{a}{x - \tau}\right)^b\right], x \geq 0, a, b > 0
\]

\[
a = \exp[\sigma \sqrt{2 \ln(N_S)}] - \sigma \left[\frac{\ln(\ln(N_S)) + \ln(4\pi)}{2 \sqrt{2 \ln(N_S)}}\right] + \mu
\]

\[
b = \sqrt{2 \ln(N_S)}
\]

Model and test results for crack-nucleating particle (area) for 7050
The analysis showed that the 7249 alloy has finer microstructures, especially smaller particles, compared to the legacy 7075-T6 material (from a previous CFSD), providing some physics for explaining the near-threshold FCGR difference between these two materials.
Probabilistic Short Crack Modeling (CTOD based)

Monte Carlo (20/1000) MC average

AGARD R0,110MPa

Number of cycles

\[a = \frac{L}{2} \text{ (mm) (half surface crack length)} \]

a – N results for 2024-T351(SENT)
Analysis (a0: IDS/particle) vs. Test (AGARD 1982)
Quantify Residual Stress Effect on Crack Growth using ACR Technique

- The adjusted compliance ratio (ACR), developed by K. Donald, is an experimental method for estimating ΔK_{eff}.
- The ACR method intends to measure the crack closure effect below the 2% crack-opening load, and quantify the remote closure effect induced by residual stress (from forging or welding).

Source: K. Donald, What is ACR?
Record of Airworthiness Risk Management (RARM, RCAF, 2003)

- Hazard Id. → Risk Ass. (RA) → Risk Ctrl. → RARM Approval → Risk Tracking
- Affecting all RCAF air fleets (DND-AD-2007-01)

Quantitative vs. Qualitative risk index

<table>
<thead>
<tr>
<th>Effect Severity</th>
<th>Catastrophic Category A</th>
<th>Hazardous (Severe Major) Category B</th>
<th>Major Category C</th>
<th>Minor Category D</th>
<th>Negligible Category E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>A1 - Extremely High</td>
<td>B1 - Extremely High</td>
<td>C1 - Medium</td>
<td>D1 - Low</td>
<td>E1</td>
</tr>
<tr>
<td>Reasonably Probable</td>
<td>A2 - Extremely High</td>
<td>B2 - High</td>
<td>C2 - Low</td>
<td>D2 - Low</td>
<td>E2</td>
</tr>
<tr>
<td>Remote Civil</td>
<td>C1 - Medium</td>
<td>B3 - Medium</td>
<td>C3 - Medium</td>
<td>D3 - Medium</td>
<td>E3</td>
</tr>
<tr>
<td>Military & UAV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Risk (Safety) Thresholds
 - Civil Derivative A/C
 - Military A/C
 - Military A/C with Ejection Seats
 - Unmanned Aerial Vehicles

Within Accepted Level of Safety (Basis of Certification)

TAM, C-05-005-001/AG-001, DTAES/DND, 2001
Holistic Structural Integrity Process (HOLSIP) for Composites/Hybrids

Structural integrity is the condition which exists when a structure is sound and unimpaired in providing the desired level of structural safety, performance, durability, and supportability (MIL-STD-1530/USAF ASIP)
Overview of Some Recent Structural Integrity Research at NRC

Min Liao

Thrust Lead
Air Defence Systems (ADS) Program

Contents

- Relevance to HOLSIP
 - NRC HOLSIP framework
- Progress of Full-Scale Testing Research (*skip here*)
- Progress of Aircraft Lifting Research
- Progress of Fatigue Enhancement Research
- Progress of SHM Research
- Progress of NDE Research
- Progress of Composite Research (*skip here*)
- Summary
Selected Applications
Corrosion Fatigue Holistic Analysis for F-18 Longeron

DDT analyses do not generally include possibility of change of criticality of structure – from durability to DT driven.

Corrosion can have such impact.

2932 simulated flight hours in full scale test

Corrosion Fatigue Holistic Analysis for F-18 Longeron

DDT analyses do not generally include possibility of change of criticality of structure – from durability to DT driven.

Corrosion can have such impact.
Advanced Damage Tolerant and Risk Analysis Tools Developed under HOLSIP Framework

- NRC developed advanced DTA and risk analysis tools (CanGROW, ProDTA) under HOLSIP framework

- NRC tools provided significant support to risk-based management for various RCAF aircraft fleets

(Liao, Renaud, Bombardier ICAF2015)

Risk analysis to determine the service life limit of CC-130 center wing with MSD/MED
Objectives: Obtain additional Al7249-T76511 material property data to support RCAF for decision-making on ASIP and reduction on maintenance cost by refining the material models of the CP-140. Required data includes:

• Fracture toughness for thin extrusions (Kc)
• Fatigue crack growth rate (FCGR) properties for negative and high stress ratios (R).

Outcomes
Fracture toughness for 4 different material thicknesses (20 coupons total; 5 replicates).
Fatigue crack growth rate (FCGR) test data for two positive and two negative stress ratios (12 coupons total)

Partnership/Leveraging: IMP Aerospace, Lockheed Martin, P-3 ASIWG, DRDC

Technical Highlights
M(T) Test Trials (under DRDC Project)

Fracture toughness test design (E561)
Validation and Transfer of Cold-Work (CW) Modeling Technology (FY15-16)

Objective:
Improve and validate methods/tools to determine practical Cold Work (CW) Life Improvement Factors (LIF) using 2D and 3D simulation, and residual stress database.

Background:
NRC and IMP recently completed cold worked hole tests for two locations of the new 7249 Al CP-140 wing (ASLEP). The LIFs determined in the lab (ideal conditions) need to be reduced to reflect in-service experience and conditions.

Partnership/Leveraging: IMP, P-3 ASIWG, USN, USAF, RMC

Technical Highlights
- Brief Review of RCAF, USN, and USAF Practice
- USAF Residual Stress Database Investigation
- NRC Cold Expansion Simulation (3D FE)
- NRC Crack Growth Simulation, evaluating CPAT and BAMF

![Graph](attachment:graph.png)

Crack growth rates at the crack nucleated from the unnotched side of the hole (#14-4)

Crack growth rates were calculated by assuming that each marker band corresponded to a spectrum pass (644,977 cycles).
Objective:
The objective of this project is to develop an additive material (Cold Spray) repair capability for the Canadian Forces. The research focus is the restoration of parts reworked (blended) beyond current repair limits.

Background:
Cold Spray is a metal spray process typically used to deposit a sacrificial layer of metal on a component for corrosion protection. Recent developments such as hand held kits, improved materials and processes has opened the possibility of using this technology for structural repair on aircraft.

Impact/Benefit/Return on Investment:
The impact is significant. Additive manufacturing processes have the potential to eliminate the costly replacement of frames and fittings, such as the CH124 Sponsor attachment fitting and the CH149 Main landing gear frames. Potential savings are likely to exceed several million dollars.

Milestones
1. Evaluation of sprayed material strengths vs requirements
2. Selection of suitable repair alloy for 7075 forgings
3. Development and initial test of a repair process
4. Exposure and durability testing of repair components
5. Completion of the test program
6. Delivery of repair scheme

Deliverables / Outputs
1. Repair material compatibility report
2. Program tests report
3. Additive repair scheme for 7075 forgings.

Technical Highlights
Sprayed density looks promising for 7075 Property testing to commence early Feb
Discussion Paper on Certification of Additive Manufactured (AM) Components

Objective: To prepare a discussion paper on certification of additive manufactured (AM) components. This paper will highlight the concerns relating to AM and the possible solutions that will allow these manufactured parts to be certified.

Background: AM is one of the most important technology trends in aerospace and defence. However, there are many issues/challenges for applying AM on primary aircraft structures/critical parts, one of them is the quantification and certification..

Impact/Benefit: Discussion paper documenting the major issues/concerns relating to the certification of AM components

Return on Investment: Increase fleet availability, reduce maintenance cost.

Client(s): DND, DTAES 7-2

Sponsor(s): DTAES 7-2

Notes/Comments:

Technical Tasks

1. Identify possible certification issues relating to additive manufactured components, such as quality, repeatability and residual stresses.
2. Support TTCP AER TP4, SA 4B.5, and coordinate with TTCP AER TP-4, MAT TP-1 and MAT TP-5

Milestones

1. Review, gather information, draft report 03/16
2. Update draft paper with DND and TTCP data 11/16

Deliverables/Outputs

- Preliminary draft of discussion paper on Mar-16
- Final report on Nov-16

Technical Highlights

TTCP presentation and Draft report discussing
- major concerns/issues
- recommendation on R&D
Future – the unfinished business
Quo Vadimus?

- Concern – new generation of practitioners (OEMs) do not seem to participate in information exchanges as the previous generation did.
 - “This is a secret” and “We are the best!” – syndrome?

- So much yet to be learned.

- Capture and share – open “learning” systems needed.

- Importance of standards and definitions.

- Will this ‘SI business’ ever be finished?
• Do we understand the risks?
Thank you