Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements

(UN CPC 3744)

These PCR apply to portland, blended hydraulic, portland-limestone, masonry, mortar, and plastic (stucco) cements.

REFERENCED PCR:
UN CPC 3744 Cement, 2010:09 V2.0, Centre for the Development of Product Sustainability in co-operation with AITEC, 2013-05-16
Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements

Scope of Validity of these PCR
These PCR apply to portland, blended hydraulic, portland-limestone, masonry, mortar, and plastic (stucco) cements.

Program Operator
NSF International’s National Center for Sustainability Standards

Interested Parties
Representatives of the following organizations participated in development of the PCR in collaboration with NSF International’s National Center for Sustainability Standards:

Additional contributors: Cement Association of Canada, Emily Lorenz, P.E., National Ready Mixed Concrete Association, Northwestern University, W. Adam Slivers, Trinity Consultants, and Martha G. VanGeem, P.E.

Review Panel
Nicholas Santero, PE International (Chairperson)
Hamid Farzam, CEMEX
Anthony Fiorato, Consultant

The PCR peer review report is available upon request at: cert@astm.org

PCR VERSION HISTORY

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Amendments</th>
<th>Date Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>09/02/14</td>
</tr>
</tbody>
</table>
Table of Contents

Page 5
1.0 | General Information
1.1 | Goal and Scope

Page 6
1.2 | EPD Ownership/Responsibility
2.0 | Period of Validity
3.0 | Definitions

Page 7
4.0 | Informed Comparison
5.0 | Company/Organization, Product, and Product Category
5.1 | Description of Company/Organization
5.2 | Definition of Product Category

Page 8
5.3 | Description of Product
6.0 | Requirements for the Underlying LCA

Page 9
6.1 | Functional and Declared Unit
6.2 | System Boundaries

Page 10
7.0 | Life-Cycle Inventory Analysis
7.1 | Data Collection and Description of Data

Page 11
7.2 | Cutoff Rules

Page 12
7.3 | Data Quality Requirements
7.4 | Units
7.5 | Allocation Rules

8.0 | Impact Categories and Characterization Factors

9.0 | Additional Environmental Information

10.0 | EPD Supporting Data

11.0 | Content of the EPD

12.0 | References
1.0 General Information

These product category rules (PCR) have been developed under the general program instructions for ASTM International’s Environmental Product Declaration (EPD) Program. The PCR are intended for use by North American organizations and other interested parties that use the same standards referenced in Section 5.2 for preparing EPDs for portland, blended hydraulic, masonry, mortar, and plastic (stucco) cements.

The referenced PCR—UN CPC 3744 Cement, 2010:09 Version 2.0, Centre for the Development of Product Sustainability in co-operation with AITEC, 2013-05-16—are inappropriate for adoption or direct adaptation as PCR for portland, blended hydraulic, masonry, mortar, and plastic (stucco) cements in the North American context.

- PCR 2010:09 Version 2.0 lists and refers to European technical data and standards such as EN 197-1 that are not applicable to North America. North American cements are specified and classified differently.
- PCR 2010:09 Version 2.0 permits the reporting of different environmental impact categories. Characterization factors are provided for abiotic depletion potential, and those factors are listed in CML-IA. ASTM PCR specifies the use of EPA TRACI methodology as the primary reporting method.
- PCR 2010:09 Version 2.0 requires listing “as a minimum, substances contained in the product that are listed in the ‘Candidate List of Substances of Very High Concern (SVHC) for authorization’ when their content exceeds the limits for registration with the European Chemicals Agency.” Listing of substances pertaining to the European Chemicals Agency is not standard practice in the North America.
- PCR 2010:09 Version 2.0 requires emissions be reported according to European Pollutant Release and Transfer Register (E-PRTR), which is specific to Europe.

1.1 GOAL AND SCOPE

This PCR document specifies rules, requirements, and guidelines for developing EPDs for portland, blended hydraulic, masonry, mortar, and plastic (stucco) cements and underlying requirements of related life-cycle assessments (LCAs). These PCR are valid for, and provide requirements for, Business-to-Business (BtoB) EPs. A BtoB EPD covers the cradle-to-gate production stage with the product packaged, if relevant, and ready for shipment at the plant gate.

An EPD prepared under these PCR shall present results over the following phases of the life cycle:

- raw materials acquisition;
- transportation; and
- manufacturing.

These PCR are consistent with and comply with the mandatory requirements contained in the following standards:

1 http://echa.europa.eu/web/guest/candidate-list-table
iso 14025: 2006 environmental labels and declarations — type iii environmental declarations — principles and procedures.
while not necessarily complying with the cen en 15804 standard, it is referenced in section 12 and has been consulted with regard to selected requirements and presentation details that go beyond or expand on the above-noted iso standards.

1.2 | epd ownership/ responsibility
the producers or group of producers who develop an epd following these pcr maintain sole ownership and have responsibility and liability for their epd.

2.0 period of validity
this pcr document is effective for five (5) years from the latest date of publication. if after five years, relevant changes in the product category or other relevant factors have occurred (for example, lca methodology), the document will be revised.

an epd created under these pcr shall be valid for a five (5) year period from the date of issue after which it shall be reviewed and verified. an epd shall be reassessed and updated after five years as necessary to reflect changes in technology or other circumstances that could alter the content and accuracy of the declaration. the process for verification and establishing the validity of an epd shall be in accordance with iso 14025 and iso 21930.

3.0 definitions
for the purposes of this document, the definitions given in iso 6707-1, iso 14025, iso 14044, iso 14050, iso 21930, and the following apply.

cement, blended hydraulic, n | a hydraulic cement consisting of two or more inorganic constituents (at least one of which is not portland cement or portland cement clinker), which separately or in combination contribute to the strength gaining properties of the cement, (made with or without other constituents, processing additions and functional additions, by intergrinding or other blending). (astm c219)

cement, masonry, n | a hydraulic cement manufactured for use in mortars for masonry construction or in plasters, or both, which contains a plasticizing material and, possibly, other performance-enhancing addition(s). (astm c219)

cement, mortar, n | a hydraulic cement manufactured for use in masonry mortar designed for specific bond and air content criteria. (astm c219)

cement, plastic, n | a hydraulic cement, primarily used in portland cement-based plastering construction, consisting of a mixture of portland or blended hydraulic cement and plasticizing materials (such as limestone or hydrated or hydraulic lime), together with other materials introduced to enhance one or more properties such as setting time, workability, water retention, and durability. (astm c1328)
cement, portland, n | a hydraulic cement produced by pulverizing clinker, consisting essentially of crystalline hydraulic calcium silicates, and usually containing one or more of the following: water, calcium sulfate, up to 5% limestone, and processing additions. (ASTM C219)

recovered material, n | material that would have otherwise been disposed of as waste or used for energy recovery, but has instead been collected and recovered as a material input, in lieu of new primary material, for a recycling or a manufacturing process. (ISO 14021)

4.0 Informed Comparison

EPDs may enable comparison between products but do not themselves compare products, as stated in ISO 14025, Sections 4 and 6.7.2. It shall be stated in EPDs created using these PCR that only EPDs prepared from cradle-to-grave life-cycle results and based on the same function, reference service life, and quantified by the same functional unit, can be used to assist purchasers and users in making informed comparisons between products. Since EPDs developed under these PCR only cover the cradle-to-gate impacts of portland, blended hydraulic, masonry, mortar, or plastic (stucco) cements, using a declared unit, the results cannot be used to compare products used in different mixtures and construction products. The results from a portland, blended hydraulic, masonry, mortar, or plastic (stucco) cements EPD must be integrated into a comprehensive cradle-to-grave, ISO 14044-compliant LCA in order to compare between different products. The basis of a comparison, where applicable, shall include the product application in accordance with ISO 21930.

5.0 Company/Organization, Product, and Product Category

5.1 | DESCRIPTION OF COMPANY/ORGANIZATION

The name of the company/organization as well as the place(s) of production shall be provided in the EPD. The EPD may also include general information about the company/organization such as the existence of quality systems, an environmental management system according to ISO 14001, or any other environmental management systems in place.

5.2 | DEFINITION OF PRODUCT CATEGORY

These PCR address UN CPC 3744, portland, blended hydraulic, portland-limestone\(^2\), masonry, mortar, and plastic (stucco) cements, which adhere to the ASTM, AASHTO, and CSA standards, shown in Table 1, that provide detailed descriptions and specifications for each product.

\(^2\) This is a separate type of cement in CSA A3001, but included as a blended hydraulic cement in ASTM C595 and AASHTO M 240.
TABLE 1: Specifications for Hydraulic Cements

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>DESCRIPTION/SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>ASTM C150, ASTM C1157, AASHTO M 85, or CSA A3001</td>
</tr>
<tr>
<td>Blended hydraulic cement</td>
<td>ASTM C595, ASTM C1157, AASHTO M 240, or CSA A3001</td>
</tr>
<tr>
<td>Portland-limestone cement</td>
<td>ASTM C595, ASTM C1157, AASHTO M 240, or CSA A3001</td>
</tr>
<tr>
<td>Performance based hydraulic cements</td>
<td>ASTM C1157</td>
</tr>
<tr>
<td>Masonry cement</td>
<td>ASTM C91 or CSA A3002</td>
</tr>
<tr>
<td>Mortar cement</td>
<td>ASTM C1329 or CSA A3002</td>
</tr>
<tr>
<td>Plastic (stucco) cement</td>
<td>ASTM C1328 or CSA A3002</td>
</tr>
</tbody>
</table>

5.3 | DESCRIPTION OF PRODUCT

The EPD shall provide a narrative description of the product that will enable the user to clearly and unambiguously identify the product. Cement shall be described in accordance with the appropriate ASTM, AASHTO, CSA, or other product specifications under which it is purchased.

This description shall include:

- Product identification by brand name, cement type, product designation, and simple visual representation, which may be by photograph or graphic illustration;
- List of the standards and other product specifications to which the products comply;
- Flow diagram illustrating main unit processes by life-cycle stage according to the scope of the declaration;
- Materials and substances to be declared; and
- Any additional information that will assist in identifying the product.

Material contents of the finished building product, including packaging, shall be declared in terms of the main components. Intentionally added substances officially classified as hazardous according to relevant national or international regulations shall be stated. Product-specific data that is confidential because of the competitive business environment, intellectual property rights, or similar legal restrictions need not be declared except where such data involves regulated hazardous substances, which must always be disclosed.

6.0 Requirements for the Underlying LCA

The underlying life-cycle assessment (LCA) shall be conducted in accordance with the ISO 14040 and ISO 14044.
6.1 | FUNCTIONAL AND DECLARED UNIT

The functional unit of a product provides the quantitative normalization for comparing products of equivalent function (functional unit) or equivalent specification. A functional unit is defined for EPDs covering the complete cradle-to-grave life cycle or the cradle-to-gate life cycle with a use stage scenario.

A declared unit is defined for EPDs covering only the cradle-to-gate or cradle-to-gate plus end-of-life stages (see Section 6.2). If the intended use of the EPD is for comparison purposes between different building products, the entire life cycle shall be included, including the use and end-of-life stages. In such situations, the functional unit shall be used as the reference unit, not the declared unit.

Since these PCR for portland, blended hydraulic, masonry, mortar, and plastic (stucco) cements only cover the cradle-to-gate stages, a declared unit shall be used. The declared unit shall be one metric tonne. Data may additionally be presented per ton (IP units).

6.2 | SYSTEM BOUNDARIES

Figure 1 shows the life-cycle stages and individual modules that shall be included within an LCA system boundary, depending on whether the EPD is BtoB or Business-to-Consumer.

FIGURE 1: Life-Cycle Stages and Modules

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>Construction-installation process</td>
<td>Use</td>
<td>Maintenance</td>
<td>Repair</td>
</tr>
</tbody>
</table>

Cradle-to-Gate or “Information Module” (BtoB EPDs) The life-cycle activities and related processes shall include modules A1, A2, and A3—the Product stage—as defined below, with scenarios for other life-cycle stages as appropriate.

Cradle-to-Grave (mandatory for BtoC EPDs) A complete cradle-to-grave LCA shall be developed for the product, including all life-cycle stages and modules, for a specified defined function and service life, inclusive of maintenance and replacement and end-of-life effects.

The system boundaries will include the average transportation of major inputs to (and within) each life-cycle stage, where relevant.

Any site-generated energy and purchased electricity shall be included in the system boundary. The extraction, processing, and delivery of purchased primary fuels, for example natural gas and primary fuels used to generate purchased electricity, shall also be included within the boundaries of the system.
Regionally specific inventory data on electricity shall be based on subnational U.S. and Canadian consumption mixes that account for power trade between the regions. If such regional data is not available, production mixes of the three continental interconnections (East, West, Texas) as well as those of Hawaii and Alaska may be used. A comparable approach shall be taken for electricity consumption in the case of materials or input products imported from outside the U.S. and Canada. The sources for electricity (calculation procedure) shall be documented.

In the case of EPDs based on these PCR, modules A1 to A3 (highlighted in Figure 1) apply.

The following are factors to be taken into account for the relevant modules.

Modules A1-A3, the Product Stage:
- Extraction and processing of raw materials, including fuels used in extraction and transport within the process;
- Average or specific transportation of raw materials from extraction site or source to manufacturing site (including any recovered materials from source to be recycled in the process), including empty backhauls and transportation to interim distribution centers or terminals;
- Manufacturing including all energy and materials required, and all emissions and wastes produced;
- Packaging, including transportation and waste disposal, to make product ready for shipment;
- If packaging is purchased from multiple suppliers, then a weighted average of the transportation distances by mode from all suppliers shall be included in the LCA modeling;
- Average or specific transportation from manufacturing site to recycling/reuse/landfill for pre-consumer wastes and unutilized by-products from manufacturing, including empty backhauls; and
- Recycling/recovery/reuse/energy recovery of pre-consumer wastes and by-products from production.

Modules A1, A2, and A3 may be declared as one aggregated module A1-A3.

Excluded from System Boundary

A summary of items that may be excluded in the primary product stages include:
- Production, manufacture, and construction of manufacturing capital goods and infrastructure;
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- Personnel-related activities (travel, furniture, and office supplies); and
- Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

7.0 Life-Cycle Inventory Analysis

7.1 DATA COLLECTION AND DESCRIPTION OF DATA

The data shall be representative according to temporal, geographical, and technological requirements.

Temporal

The obtained information from the manufacturing process should be annual values, preferably from the previous twelve-month period or calendar year. Average background data shall not be older than ten years unless accompanied by a statement attesting to the validity of older data.
Geographical | The geographic region of the relevant life-cycle stages included in the calculation of representative data shall be documented.

Technological | Data shall represent technology in use.

The use of specific or generic background data shall be documented. As a rule, the following distribution will be applied:

- Extraction and/or production of raw materials (specific or average background);
- Manufacturing of the product (specific);
- Data sources and any calculation procedures for the fuel mix for electricity generation shall be documented;
- Hazardous waste shall be reported according to applicable U.S. and/or Canadian federal or state/provincial regulations (or appropriate regulations for materials imported from outside North America);
- If EPDs for upstream products are not available, data from the best available published literature shall be permitted to be used; and
- If multiple suppliers are used for one material, then a weighted average, based on volume or mass, shall be used to assign transport distance and mode.

For generic data, national databases shall be used to the extent that they are applicable (for example, U.S. Life Cycle Inventory Database, www.nrel.gov/lci). If appropriate national data are not available, sources for similar technology adjusted for national boundary conditions (for example, energy mix) may be used. Data from other regions is acceptable if it is determined and justified that those data are the best available.

All data sources shall be specified, including database and year of publication (reference). Sources of data for transport models (including transport mode, distances, and quantities to be transported) and thermal energy production shall be documented. Where proxy data is used in the absence of specific data for chemicals or other inputs, the source and justification for selection of the proxies shall be documented in the LCA report.

When preparing an average EPD for an identical product manufactured at multiple facilities, the LCI data for each site shall be weighted to determine the average. Weighting shall be by portland, blended hydraulic, masonry, mortar, and plastic (stucco) cements annual production for each of the four cement-plant process types. A plant-specific EPD shall identify the plant process type: dry with preheater and precalciners, dry with preheater, long dry, or wet. Data reported in the declarations shall be as production-weighted averages of multiple facilities.

The product content will be described in the declaration. Product-specific data that is confidential because of the competitive business environment, intellectual property rights, or similar legal restrictions need not be declared. In such cases, a notation that the information is confidential will be made along with a description of the function of the component.

7.2 | CUTOFF RULES

Criteria for the exclusion of inputs and outputs (cutoff rules) in the LCA and information modules and any additional information are intended to support an efficient calculation procedure. They shall not be applied in order to hide data. Any application of the criteria for the exclusion of inputs and outputs shall...
be documented. All inputs and outputs to a (unit) process, for which data are available, shall be included in the calculation. Data gaps may be filled by conservative assumptions with average or generic data. Any assumptions for such choices shall be documented.

The cutoff criteria for flows to be considered within each system boundary are as follows:

- **Mass**
 If a flow is less than 1% of the cumulative mass of the model flows, it may be excluded, provided its environmental relevance is minor.

- **Energy**
 If a flow is less than 1% of the cumulative energy of the system model, it may be excluded, provided its environmental relevance is minor.

- **Environmental relevance**
 Material and energy flows known to have the potential to cause significant emissions into air, water, or soil related to the environmental indicators of these PCR shall be included even if such flows meet the above criteria for mass and energy as defined in ISO 21930, Section 6.2.7.2.

At least 95% of the energy usage and mass shall be included and the life-cycle impact data shall contain at least 95% of all elementary flows that contribute to each of the declared category indicators.

A list of hazardous and toxic materials and substances shall be included in the inventory and the cutoff rules do not apply to such substances.

7.3 DATA QUALITY REQUIREMENTS

Any secondary data source used in the underlying life-cycle inventory shall be complete and representative of the applicable North American region in terms of its geographic and technological coverage and of a recent vintage, which is typically less than ten years old. Any deviations from these requirements for secondary data shall be documented and the following apply:

- All data shall be accurate and representative of the production process, current technology, and current measurement capability.

- The information obtained from the manufacturing process shall be annual average values.

- Average background data shall not be older than ten years for industry average data or five years for producer-specific data, unless justification is provided.

- When the owner of the EPD is not the owner of all upstream processes, the owner shall contact its suppliers within the system boundary. If the suppliers do not supply data, the owner shall use the best-available data in the literature based on data quality requirements of this PCR.

- Data shall be identified as direct (for example, measurements or purchasing records), indirect (based on calculations), estimated, or other.

7.4 UNITS

SI units shall be used with conversions as shown in the Table 2 as necessary. Preferred power and energy units are as follows:

- kWh or MJ for electric energy

- kW or MW for power
TABLE 2: Conversion Factors to be Used if Reporting in IP Units (Imperial)

<table>
<thead>
<tr>
<th>Convert from</th>
<th>To</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square meter (m²)</td>
<td>Square foot (ft²)</td>
<td>1.076391E+01</td>
</tr>
<tr>
<td>Kilogram (kg)</td>
<td>Pound (lb)</td>
<td>2.204622</td>
</tr>
<tr>
<td>Mega joule (MJ)</td>
<td>British Thermal Unit (Btu)</td>
<td>9.478170E+02</td>
</tr>
<tr>
<td>Degree Celsius (°C)</td>
<td>Degree Fahrenheit (°F)</td>
<td>(°C * 9/5) +32</td>
</tr>
<tr>
<td>Cubic meter (m³)</td>
<td>Cubic foot (ft³)</td>
<td>3.531466E+01</td>
</tr>
<tr>
<td>Meter (m)</td>
<td>Foot (ft)</td>
<td>3.281</td>
</tr>
<tr>
<td>m²K/W</td>
<td>ft²Fhr/Btu</td>
<td>5.6783</td>
</tr>
<tr>
<td>Metric tonne</td>
<td>Ton</td>
<td>1.102</td>
</tr>
</tbody>
</table>

7.5 ALLOCATION RULES

In a production process in which more than one type of product is generated, it is necessary to allocate the environmental flows (inputs and outputs) from the process to the different products to get product-based inventory data. Allocation, if required, shall follow the requirements and guidance of ISO 14044, Section 4.3.4.

Allocation related to transport shall be based on the mass of transported product.

When the product's original function is no longer needed or possible, the product can be processed further in a waste management system. For example, it can be recycled, reused, or energy recovered. Emissions from downstream recycling, or combustion, after the end of waste state will be allocated to the new downstream products, such as heat and electricity. In the case of incineration of wastes for energy production at the primary production site, the combustion emissions shall be allocated to the building product unless the energy is exported.

Cement recycling processes may be treated as closed loop recycling when the recycled cement is used as a substitute for material in the kiln. In this case, only the flows and impacts associated with recovery of the recycled cement shall be taken into account and the need for allocation is avoided since the use of secondary material displaces the use of virgin (primary) materials.

If different allocation options are relevant and a deviation of greater than 20% is a foreseen outcome, a sensitivity analysis shall be initiated. These different allocation approaches and data sets shall be documented and declared.

Only the materials, water, energy, emissions, and other elemental flows associated with reprocessing, handling, sorting, and transportation from the point of the generating industrial process to their use in the cement plant need to be considered for recycled or recovered materials. Any allocations before reprocessing shall be allocated to the original product. EPA states in their Waste Reduction Model (WARM) document, "Because fly ash is a byproduct (waste) of the process of combusting coal for electricity, WARM considers that there are no manufacturing or combustion emissions associated with
fly ash itself.” In addition, processed and unprocessed slag and silica fume are considered waste (and therefore a recovered material) and not co-products.

Recycled and recovered materials with fuel content and used as fuels, such as scrap tires shall be considered alternative energy. Only the materials, water, energy, emissions, and other elemental flows associated with reprocessing, handling, sorting, and transportation from the point of the generating industrial process to their use in the production process need to be considered. All emissions from combustion at the point of use shall be taken into account. Any allocation before the end-of-waste state shall be allocated to the original product.

8.0 Impact Categories and Characterization Factors

Environmental impact category indicators shall be taken from Table 3 for declaring environmental aspects in accordance with ISO 21930, Section 8.2 and ISO 14044.

<table>
<thead>
<tr>
<th>Category Indicator</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential (GWP)</td>
<td>kg CO₂ equiv</td>
</tr>
<tr>
<td>Acidification potential</td>
<td>kg SO₂ equiv</td>
</tr>
<tr>
<td>Eutrophication potential</td>
<td>kg N equiv</td>
</tr>
<tr>
<td>Smog creation potential</td>
<td>kg O₃ equiv</td>
</tr>
<tr>
<td>Ozone depletion potential</td>
<td>kg CFC-11 equiv</td>
</tr>
<tr>
<td>Total primary energy consumption</td>
<td></td>
</tr>
<tr>
<td>Nonrenewable fossil</td>
<td>MJ (HHV)</td>
</tr>
<tr>
<td>Nonrenewable nuclear</td>
<td>MJ (HHV)</td>
</tr>
<tr>
<td>Renewable (solar, wind, hydroelectric, and</td>
<td>MJ (HHV)</td>
</tr>
<tr>
<td>geothermal)</td>
<td></td>
</tr>
<tr>
<td>Renewable (biomass)</td>
<td>MJ (HHV)</td>
</tr>
<tr>
<td>Material resources consumption</td>
<td></td>
</tr>
<tr>
<td>Nonrenewable material resources</td>
<td>kg</td>
</tr>
<tr>
<td>Renewable material resources</td>
<td>kg</td>
</tr>
<tr>
<td>Net fresh water (inputs minus outputs)</td>
<td>L</td>
</tr>
<tr>
<td>Non-hazardous waste generated</td>
<td>kg</td>
</tr>
<tr>
<td>Hazardous waste generated</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes for Table 3:
1. Fresh water is naturally occurring water on the earth’s surface and underground as groundwater in aquifers and underground streams. The term specifically excludes seawater and brackish water, but does include fresh water that has been treated to make it potable. Energy use and other impacts associated with fresh water treatment are not included.
2. Recovered or recycled materials are neither nonrenewable nor renewable resources under ISO definitions. The use of such
3. Primary energy is an energy form found in nature that has not been subjected to any conversion or transformation process. Examples of primary fuels are coal, natural gas, etc.

4. Recycled and recovered materials with fuel content and used as fuels shall be considered alternative energy. Examples of secondary fuels used as an alternative energy source and recovered from previous use or as waste are solvents, wood, tires, oil, and animal fat. Emissions from secondary fuels shall be included in the calculation of environmental impacts.

5. Energy consumption shall be reported in Higher Heating Values (HHV) mega joules.

6. Where applicable, feedstock energy shall be declared and shown separately.

The impact categories of life-cycle impact assessment (LCIA) shall be calculated using characterization factors specified in version 2.1 of TRACI (Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts). http://www.epa.gov/nrmrl/std/traci/traci.html

9.0 Additional Environmental Information

A Type III environmental declaration shall include, where relevant, additional information related to environmental issues, other than the environmental information derived from LCA, LCI, or information modules. This information shall be separated from the information described in ISO 14025, Section 7.2.2. Identification of the significant environmental aspects should, as a minimum, take into consideration the following:

- Information on environmental issues, such as
 - Impact(s) and potential impact(s) on biodiversity,
 - Toxicity related to human health or the environment or both, and
 - Geographical aspects relating to any stages of the life cycle (for example, a discussion on the relation between the potential environmental impact(s) and the location of the product system);

- Data on product performance, if environmentally significant;

- The organization’s adherence to any environmental management system, with a statement on where an interested party may find details of the system;

- Any other environmental certification program applied to the product and a statement on where an interested party may find details of the certification program;

- Other environmental activities of the organization, such as participation in recycling or recovery programs or renewable energy credits (REC), provided details of these programs are readily available to the purchaser or user and contact information is provided;

- Information that is derived from LCA but not communicated in the typical LCI-or LCIA-based formats;

- Instructions and limits for efficient use;

- Hazard and risk assessment on human health and the environment;

- Information on absence or level of presence of a material in the product that is considered of environmental significance in certain areas (see ISO 14021, Sections 5.4 and 5.7);

- Preferred waste management option for used products; and

- Potential for incidents that can have impact(s) on the environment, such as recycled content or recycling rates.
Additional information shall only be related to environmental issues. Information and instructions on product safety unrelated to the environmental performance of the building product shall not be part of a Type III environmental declaration.

10.0 EPD Supporting Data

A project report shall be prepared in accordance with the requirements and guidance of ISO 14044:2006, Section 6, for third-party reports. This information shall document the LCA study and additional environmental information in a systematic, comprehensive way, and shall be made available to the verifier in order to demonstrate that the requirements of this PCR document and ISO 21930 have been met. The project report shall include, where relevant:

- The commissioner of the report, the contact information of the report author, and the date of the report;
- The input and output environmental data of the unit processes that are used for the LCA calculations;
- The documentation (measurements, calculations, estimates, sources, correspondence, traceable references to origin, and so forth) that provides the basis from which the process data for the LCA is formulated;
- The specification used to create the manufacturer's products;
- Energy consumption figures;
- Emission data to air, water, and soil;
- Waste production;
- Data that demonstrates that the information is complete—in specific cases, reference can be made to, for instance, standards or quality regulations;
- Referenced literature and databases from which data have been extracted;
- Data used to carry out sensitivity analyses;
- Documentation that demonstrates that the building product can fulfill the desired function(s) and performance;
- Documentation that demonstrates that the chosen processes and scenarios in the flow chart satisfy the requirements in ISO 21930;
- Documentation and substantiation of the percentages and figures (number of cycles, prices, and so forth) used for the calculations in the allocation procedure;
- Information showing how averages of different reporting locations have been calculated to obtain generic data;
- Documentation used to substantiate any qualitative information in the additional environmental information;
- Procedures used to carry out the data collection (questionnaires, instructions, informative material, confidentiality agreements, and so forth);
- The characterization factors used;
- The criteria and substantiation used to determine the system limits and the selection of input and output flows;
- Documentation that demonstrates consistency when using information modules; and
• Documentation used to substantiate the other choices and assumptions.

11.0 Content of the EPD

The following demonstration of verification shall be completed and included with the EPD. Note that third-party verification is optional for BtoB EPDs, but mandatory for BtoC EPDs.

Demonstration of Verification

<table>
<thead>
<tr>
<th>PCR review, was conducted by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>< name and organization of the chair, and information on how to contact the chair through the programme operator ></td>
</tr>
</tbody>
</table>

Independent verification of the declaration and data, according to ISO 14025:

<table>
<thead>
<tr>
<th>internal</th>
<th>external</th>
</tr>
</thead>
</table>

(Where appropriate3) Third party verifier:

<name of third party verifier>

All Type III environmental declarations in a product category shall follow the format and include the parameters as identified in this PCR. The following general information shall be declared in the EPD:

• Name and address of the manufacturer(s);
• Product identification by name (including, for example, production code) and a simple visual representation of the product;
• Description of the building product’s use and the functional or declared unit of the product to which the data relates;
• Description of the application (installation) of the building product where relevant;
• Detailed list of the substances, by weight, that make up the building product, taking into account cutoff rules and confidentiality;
• Data from LCA or LCI or information modules, as per ISO 14025, Section 7.2.2
• Additional environmental information (see Section 9);
• Statement that the EPD is cradle-to-gate;
• Statement that EPDs from different programs (using different PCR) may not be comparable;
• Statement that the EPD represents an average performance in cases where an EPD declares an average performance for a number of products, with the range of the product’s performance with respect to the average stated;
• Information on where explanatory material may be obtained;
• Diagram of the life-cycle stages included in the LCA and system boundaries;
• Name of the program and the program operator’s address and, if relevant, the logo and website URL;

3 Optional for business to business communication, mandatory for business to consumer communication.
Preparing an Environmental Product Declaration for Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements

12.0 References

AASHTO Standards: A
- AASHTO M 85 Standard Specification for Portland Cement
- AASHTO M 240 Standard Specification for Blended Hydraulic Cement

ASTM Standards: B
- ASTM C91 Standard Specification for Masonry Cement
- ASTM C1157/C1157M Performance Specification for Hydraulic Cement

CSA Standards: C
- CSA A3001 Cementitious Materials for Use in Concrete
- CSA A3002 Masonry and Mortar Cement

ISO Standards: D
- ISO 14021:1999 Environmental Labels and Declarations – Self-declared Environmental Claims (Type II Environmental Labelling)
- ISO 14025:2006 Environmental Labels and Declarations – Type III Environmental Declarations Principles and Procedures

Preparing an Environmental Product Declaration for Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements

ISO 14050:2009 Environmental management – Vocabulary
ISO 21930:2007 Sustainability in Building Construction – Environmental Declaration of Building Products

Other References:
BS EN 15804 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products
Carbon Leadership Forum (CLF), Product Category Rules (PCR) for ISO 14025 Type III Environmental Product Declarations (EPDs) of Concrete, Revised Version 1.1 December 2013
UN CPC 375 Concrete Product Category Rules, version 1.0, dated February 2013, developed for the World Business Council for Sustainable Development (WBCSD) Cement Sustainability Initiative—global scope
UN CPC 3744 Cement, Centre for the Development of Product Sustainability in co-operation with AITEC, 2013-05-16

8 European Committee for Standardization (CEN), Avenue Marnix 17, B-1000 Brussels, Belgium, www.cen.eu
10 Available from World Business Council for Sustainable Development (WBCSD), Maison de la Paix, Chemin Eugène- Rigot 2, CH-1211 Geneva, Switzerland. www.wbcsdcement.org; http://www.wbcsdcement.org/pdf/pcr-1302_CPC_375_Concrete_1_0.pdf