STP 1426

Insulation Materials: Testing and Applications: 4th Volume

André O. Desjarlais and Robert R. Zarr, editors

ASTM Stock Number: STP1426

ASTM International
100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19428-2959

Printed in the U. S. A.
Contents

Overview vii

SESSION I: THERMAL, MECHANICAL, AND HYGRIC PROPERTIES


Calculating Thermal Test Results—The History and Use of ASTM Standard Practice C 1045—J. R. Mumaw 17


Creep Tests and Techniques for Predicting Densities Necessary to Prevent Settling of Loose-fill Insulation in Walls—T. V. Rasmussen 42

Thermal Conductivity and Moisture Measurements on Masonry Materials—D. R. Salmon, R. G. Williams, and R. F. Tye 58

SESSION II: TESTING

Thermal Modeling of Multiple-Line-Heat-Source Guarded Hot Plate Apparatus—W. M. Healy and D. R. Flynn 79


Round Robin Interlaboratory Comparison of Thermal Conductivity Testing Using the Guarded Hot Plate up to 1000°C—M. A. Albers 115

NPL Vacuum Guarded Hot-Plate for Measuring Thermal Conductivity and Total Hemispherical Emittance of Insulation Materials—C. Stacey 130
SESSION III: BUILDING SYSTEMS I

Accuracy of Hot Box Testing of Steel Stud Walls—J. KOŚNY AND P. CHILDS

Effect of Steel Framing in Attic/Ceiling Assemblies on Overall Thermal Resistance—
T. W. PETRIE, J. KOŚNY, J. A. ATCHLEY, AND A. O. DESJARLAIS

A Test Protocol for Comparison of the Moisture Absorption Behavior
of Below-Ambient Piping Insulation Systems Operating in Hot-Humid
Environments—J. R. MUMAW

SESSION IV: BUILDING SYSTEMS II

Uncertainty Analysis of a Calibrated Hot Box—S. YUAN, G. A. RUSSELL, AND W. P. GOSS

An Assessment of Interlaboratory Repeatability in Fenestration Energy Ratings:
2001 NFRC Interlaboratory Test Round Robin—D. J. WISE AND B. V. SHAH

Calibration Procedure of a Calibrated Hot Box—S. YUAN, S. D. GATLAND, II,
AND W. P. GOSS

SESSION V: INDUSTRIAL INSULATIONS

A Pipe Insulation Test Apparatus for Use Below Room Temperature—K. E. WILKES,

Thermal Physical and Optical Properties of Fiber Insulation Materials in the
Temperature Range 200–1800 °C—E. LITOFSKY, J. I. KLEIMAN, AND N. MENN

Evaluating the Fire Performance of Thermal Pipe Insulation by Use of the
Vertical Pipe Chase Apparatus—P. A. HOUGH, T. W. FRITZ, P. L. HUNISBERGER,
AND D. C. REED

Review of Thermal Properties of a Variety of Commercial and Industrial Pipe
Insulation Materials—T. E. WHITAKER AND D. W. YARBROUGH

SESSION VI: NOVEL BUILDING SYSTEMS

Use of Sugarcane Fiber as Building Insulation—K. MANOHAR, J. RAMROOPSINGH,
AND D. W. YARBROUGH

Vacuum Insulation Round Robin to Compare Different Methods of Determining
Effective Vacuum Insulation Panel Thermal Resistance—T. K. STOVALL
AND A. BRZEZINSKI

The Use of Wicking Technology to Manage Moisture in Below-Ambient Insulation
Systems—C. P. CRALL
The Influence of Measurement Uncertainties on the Calculated Hygrothermal Performance—A. H. HOLM AND H. M. KÜNZEL

SESSION VII: FOAM INSULATIONS


Performance of Molded Expanded Polystyrene (EPS) Thermal Insulation in Below-Grade Applications—J. WHALEN


APPENDIX