Fatigue Crack Growth Thresholds, Endurance Limits, and Design

J. C. Newman, Jr. and R. S. Piascik, editors

ASTM Stock Number: STP1372

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959

Printed in the U.S.A.
Contents

Overview vii

MECHANISMS

Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation—
J. PETIT, G. HENAFF, AND C. SARRAZIN-BAUDOUX 3

The Significance of the Intrinsic Threshold—What Is New?—A. HADRBOLETZ,
B. WEISS, AND R. STICKLER 31

On the Significance of Crack Tip Shielding in Fatigue Threshold—Theoretical
Relations and Experimental Implications—H.-J. SCHINDLER 46

Effects of K_{max} on Fatigue Crack Growth Threshold in Aluminum Alloys—
J. A. NEWMAN, JR., W. T. RIDDLEL, AND R. S. PIASTIEK 63

TEST PROCEDURES

Fatigue Crack Growth Threshold Concept and Test Results for Al- and
Ti-Alloys—G. MARCI 81

Resistance Curves for the Threshold of Fatigue Crack Propagation in Particle
Reinforced Aluminum Alloys—B. TABERNIG, P. POWELL, AND R. PIPPAN 96

An Indirect Technique for Determining Closure-Free Fatigue Crack Growth
Behavior—S. W. SMITH AND R. S. PIASIEK 109

Effect of an Overload on the Threshold Level of Ti-6-22-22—A. J. MCEVILY,
M. OSHI, R. SHOWER, AND A. DEARMINE 123

Relation Between Endurance Limits and Thresholds in the Field of Gigacycle
Fatigue—C. BATHIAS 135

A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718—
K. R. GARR AND G. C. HRESKO, III 155
Effect of Geometry and Load History on Fatigue Crack Growth in Ti-62222—
H. O. Liknes and R. R. Stephens

Increases in Fatigue Crack Growth Rate and Reductions in Fatigue Strength
Due to Periodic Overstrains in Biaxial Fatigue Loading—
A. Varvani-Parahani and T. H. Topper

Analysis

Analysis of Fatigue Crack Closure During Simulated Threshold Testing—
R. C. McClung

Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions
for Large-Crack Behavior—J. C. Newman, Jr.

The Mechanics of Moderately Stressed Cracks—F. O. Riemelmoser and
R. Pippin

Applications

Pitfalls to Avoid in Threshold Testing and Its Interpretation—R. W. Bush,
J. K. Donald, and R. J. Bucci

Use of Small Fatigue Crack Growth Analysis in Predicting the S-N Response
of Cast Aluminium Alloys—M. J. Caton, J. W. Jones, and J. E. Allison

Prediction of Fatigue Limits of Engineering Components Containing Small
Defects—Y. Akiniwa and K. Tanaka

Corrosion Fatigue Crack Growth Thresholds for Cast Nickel-Aluminum
Bronze and Welds—E. J. Czyryca

Mean Stress and Environmental Effects on Near-Threshold Fatigue Crack
Propagation on a Ti6246 Alloy at Room Temperature and 500°C—
C. Sarrazin-Baudoux, Y. Chabanne, and J. Petit

Component Design: The Interface Between Threshold and Endurance Limit—
D. Taylor and G. Wang

Near-Threshold Fatigue Strength of a Welded Steel Bridge Detail—
P. Albrecht and W. J. Wright

Fatigue Crack Growth Thresholds Measurements in Structural Materials—
R. Lindström, F. Lidaar, and B. Rosborg