Life Prediction Methodologies and Data for Ceramic Materials

C. R. Brinkman and S. F. Duffy, editors

ASTM Publication Code Number (PCN)
04-012010-09

ASTM
1916 Race Street
Philadelphia, PA 19103
Contents

Overview—C. R. BRINKMAN AND S. F. DUFFY vii

DATA AND MODEL DEVELOPMENT

Silicon Nitride Tensile Strength Data Base from Ceramic Technology Program Processing for Reliability Project—M. R. FOLEY, V. K. PUJARI, L. C. SALES, AND D. M. TRACEY 3


Fracture Mechanism Maps: Their Applicability to Silicon Nitride—S. M. WEIDERHORN, G. D. QUINN, AND R. KRAUSE 36


Creep Behavior of Silicon Nitride Determined from Curvature and Neutral Axis Shift Measuring in Flexure Tests—J. A. SALEM AND S. R. CHOI 84

Comparison of Tension and Flexure to Determine Fatigue Life Prediction Parameters at Elevated Temperatures—S. R. CHOI, J. A. SALEM, AND J. L. PALKO 98

Monotonic and Cyclic Rupture of a Silicon Nitride Ceramic—F. HILD AND D. MARQUIS 112

Mechanical Properties and NDE of a HIP'ed Silicon Nitride—P. K. KHANDELWAL 127

LIFE PREDICTION METHODOLOGIES

The Numerical Evaluation of Failure Theories for Brittle Materials—J. SMART AND S. L. FOK 143

Lifetime Prediction for Ceramic Materials Under Constant and Cyclic Load—T. FETT AND D. MUNZ 161
Probabilistic Failure Predictions in Ceramics and Ceramic Matrix Fiber Reinforced Composites—J. L. Lamon 175


A Methodology to Predict Creep Life for Advanced Ceramics Using Continuum Damage Mechanics Concepts—T-J. Chuang and S. F. Duffy 207

Time-Dependent Strength Degradation and Reliability of an Alumina Ceramic Subjected to Biaxial Flexure—L.-Y. Chao and D. K. Shetty 228

Weibull Estimators for Pooled Fracture Data—C. A. Johnson and W. T. Tucker 250

The Multiaxial Equivalent of Stressed Volume—W. T. Tucker and C. A. Johnson 263

Determination of Defect Distributions for Use in Failure Theories of Load Bearing Ceramics—J. Margeson 280

PREDICTION OF THE BEHAVIOR OF STRUCTURAL COMPONENTS


Lifetime Prediction for Ceramic Tubular Components—O. M. Jadaan 309

Evaluation of Tests for Measuring the Strength of Ceramic Tubes—W. G. T. Kranendonk and S. Sinnema 333

Effect of Proof Testing on the Failure Probability of Multiaxially Loaded Ceramic Components—A. Brückner-Poitz, A. Heger, and D. Munz 346

Predicting Creep Behavior of Silicon Nitride Components Using Finite Element Techniques—J. A. Wade, C. S. White, and F. J. Wu 360


Author Index 409

Subject Index 411