Contents

Overview

Relationship Amongst Various Measures of Damping

The Measurement of the Material Damping of High Polymers Over Ten Decades of Frequency and Its Interpretation — H. Kolosky

Damping Mechanisms in Thin-Layer Materials — B. S. Berry

Mechanical Energy Dissipation Related with Martensitic Transformation Processes — R. de Batist

Nontraditional Applications of Damping Measurements — R. F. Gibson

Damping Studies of Ceramic Reinforced Aluminum — C. R. Wong and S. Holcomb

Irreversible Heat Transfer as a Source of Thermoelastic Damping — V. K. Kinra and K. B. Milligan

Phase Changes and Damping in Crystalline Materials — A. Wolfenden, L. S. Cook, and J. M. Wolla

Characterization of the Damping Properties of High-Damping Alloys — I. G. Ritchie and Z.-L. Pan

Effect of Microstructure on Damping in Metal-Matrix Composites: A Review — S. P. Rawal, J. H. Armstrong, and M. S. Misra

On the Instability of the High Damping Peak During the Forward and Reverse Martensitic Transformation in Shape Memory Alloys — J. Stober, J. Van Humbeeck, and R. Gotthardt

Nonlinear Damping Due to Boundary Motion — M. Wuttig

A Study of Dislocations in Plastically-Cycled Pure Aluminum at Room Temperature Using Ultrasonic Measurements — A. Vincent, F. Charvieux, X. Zhou, and R. Fougères

Internal Friction in Spinel — J. Woirgard, A. Riviére, and P. Mazot

Internal Friction Peaks Due to Oxygen, Nitrogen, and Hydrogen in Vanadium-Niobium (V-Nb) Alloys — O. Buck, O. N. Carlson, H. Indrawirawan, L. J. H. Brasche, and D. T. Peterson
Wave Attenuation in Fiber-Reinforced Composites—A. K. MAL, Y. BAR-COHEN, AND S.-S. LIH

An Internal Friction Study of Melting in Aluminum-Indium and Aluminum-Lead Alloys—A. K. MALHOTRA AND D. C. VAN AKEN

Modeling and Measurement of Axial and Flexural Damping in Metal-Matrix Composites—G. G. WREN AND V. K. KINRA

The Relationship of Traditional Damping Measures for Materials with High Damping Capacity: A Review—E. J. GRAESSER AND C. R. WONG

Finite Elements for Modeling Frequency-Dependent Material Damping Using Internal State Variables—G. A. LESIEUTRE

Internal Friction Investigation in High-Purity Tantalum and Niobium by Isothermal and Isochronal Measurements—G. D’ANNA AND W. BENOIT

Nonlinear Internal Friction in a Premartensitic Cu$_{74}$Al$_{25}$Ni$_{1}$ Alloy—I. C. HWANG AND M. WUTTIG

Internal Friction and Young’s Modulus Measurements in Zr-2.5Nb Alloy Doped with Hydrogen—J. G. RITCHIE AND Z.-L. PAN

A Fundamental Connection Between Intrinsic Material Damping and Structural Damping—V. K. KINRA AND C. L. YAPURA

High-Temperature Anelastic Relaxation of Dense Zircon Bodies—M. GIMENEZ, G. FANTOZZI, R. TORRECILLAS, M. GARDON, S. MOYA, AND S. DE AZA

Damping and Dynamic Elastic Modulus of Ceramics and Ceramic-Matrix Composites at Elevated Temperatures—P. T. JAMINET, A. WOLFENDEN, AND V. K. KINRA

High-Temperature Isothermal Internal Friction Measurements in NiCoCrAlY Alloys—P. GADAUD, A. RIVIERE, AND J. WOIRGARD

Some Improvements in the Flexural Damping Measurement Technique—J. E. BISHOP AND V. K. KINRA

Integrated Mechanics for the Passive Damping of Polymer-Matrix Composites and Composite Structures—D. A. SARAVANOS AND C. C. CHAMIS

