Standardization of Fretting Fatigue Test Methods and Equipment

M. Helmi Attia and R. B. Waterhouse, editors

ASTM Publication Code Number (PCN) 04-011590-30

Contents

Overview—M. H. ATTIA AND R. B. WATERHOUSE	1
A Historical Introduction to Fretting Fatigue—R. B. WATERHOUSE	8
Opening Paper	
The Problems of Fretting Fatigue Testing—R. B. WATERHOUSE	13
FUNDAMENTAL ASPECTS OF FRETTING FATIGUE TESTING—CONCEPTUAL FRAME	EWORK
Mechanisms of Fretting Fatigue and Their Impact on Test Methods Development—D. W. HOEPPNER	23
Testing Methods in Fretting Fatigue: A Critical Appraisal—L. VINCENT, Y. BERTHIER, AND M. GODET	33
Fretting and Contact Fatigue Studied with the Aid of Fretting Maps— O. B. VINGSBO	49
Variables of Fretting Process: Are There 50 of Them?—J. DOBROMIRSKI	60
Fundamental Aspects of Fretting Fatigue Testing—Mechanics of Col	NTACT
The Development of a Fretting Fatigue Experiment with Well-Defined Characteristics—D. A. HILLS AND D. NOWELL	69
Determination and Control of Contact Pressure Distribution in Fretting Fatigue— K. SATO	[₹] 85
Fretting Fatigue Analysis of Strength Improvement Models with Grooving or Knurling on a Contact Surface—T. HATTORI, M. NAKAMURA, AND T. ISHIZUKA	101
Effect of Contact Pressure on Fretting Fatigue of High Strength Steel and Titanium Alloy—K. NAKAZAWA, M. SUMITA, AND N. MARUYAMA	115

FRETTING FATIGUE TESTING—METHODS AND EQUIPMENT

A Critical Review of Fretting Fatigue Investigations at the Royal Aerospace	129
Establishment—D. B. RAYAPROLU AND R. COOK	129
Fretting Fatigue in the Power Generation Industry: Experiments, Analysis, and Integrity Assessment—T. C. LINDLEY AND K. J. NIX	153
Techniques for the Characterization of Fretting Fatigue Damage—C. RUIZ, Z. P. WANG, AND P. H. WEBB	170
The Influence of Fretting Corrosion on Fatigue Strength of Nodular Cast Iron and Steel under Constant Amplitude and Load Spectrum Tests—G. FISCHER, V. GRUBISIC, AND O. BUXBAUM	178
Adaptation of a Servohydraulic Testing Machine to Investigate the Life of Machine Components Operating under Fretting Conditions—J. LABEDZ	190
Environmental and Surface Conditions	
Improving Fretting Fatigue Strength at Elevated Temperatures by Shot Peening in Steam Turbine Steel—Y. MUTOH, T. SATOH, AND E. TSUNODA	199
The Fretting Fatigue Properties of a Blade Steel in Air and Vapor Environments—D. YUNSHU, Z. BAOYU, AND L. WEILI	210
The Application of Electrochemical Techniques to Evaluate the Role of Corrosion in Fretting Fatigue of a High Strength Low Alloy Steel—s. PRICE AND D. E. TAYLOR	217
Nonconventional Materials and Test Methods	
ACSR Electrical Conductor Fretting Fatigue at Spacer Clamps—A. CARDON, L. CLOUTIER, M. ST-LOUIS, AND A. LEBLOND	231
Fretting Fatigue of Carbon Fiber-Reinforced Epoxy Laminates—O. JACOBS, K. SCHULTE, AND K. FRIEDRICH	243
Closing Paper	
Fretting Fatigue Testing: Current Practice and Future Prospects for Standardization—M. H. ATTIA	263
Author Index	277
Subject Index	279