Manual 59
A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design

TABLE OF CONTENTS

Preface

Chapter 1 — Lubrication Fundamentals
Functions of a Lubricant
Lubricants Market
Friction and Lubrication
  Friction
  Lubrication
Viscosity and Wear
  Viscosity
  Wear
Types of Lubricants
Lubricant Selection and Specifications
  Lubricant Selection Criteria
  Lubricant Classifications
Lubricant Composition

Chapter 2 — Mineral Base Oils
Petroleum Composition
  Oil Field and Refinery Chemicals
Petroleum Refining
  Refinery Processes
  Refinery Process Chemicals
Lubricant Base Stocks
  Comparison Between Naphthenic and Paraffinic Base Oils
  Mineral Base Oil Manufacture
  Hydrocarbon Analysis
Base Oil Properties
  Oxidation Properties
  Effects of Sulfur And Nitrogen Compounds
  Other Properties
  Gas to Liquid Technology

Chapter 3 — Synthetic and Biological (Natural) Base Stocks
Synthetic Base Stocks
  Synthetic Hydrocarbon (SHC) Polymers
  Carboxylate Esters
  Poly(Alkylene Glycols)
Other Synthetic Base Stocks
  Petroleum Base Stocks Versus Synthetic Base Fluids
Biological (Natural) Base Stocks
  Melting Point/Pour Point
  Oxidative Stability
  Manufacture and Processing
  Composition of Natural Oils and Structural Modifications

Chapter 4 — Lubricant Additives
Desirable Lubricant Properties
Criteria for Suitable Base Stocks
Performance Additives
  Stabilizers/Deposit Control Agents
  Oxidation Inhibitors
  Dispersants
  Detergents
  Film-Forming Agents
Emulsifiers and Demulsifiers
Polymeric Additives
Other Additives
Multifunctional Nature of Additives
Environmental Impact of Additives
The Introduction of a New Additive
The Approval Process

Chapter 5 — Combustion Engine Lubricants
Types of Engines And Mode Of Their Operation
Lubricant Specifications and Classifications
  Trends Impacting the New Performance Standards
  U.S. Standards
  European Standards
  Japanese Standards
  Indian Standards
  Engine Oil Classification Based On End-Use
  Lubricant-Related Causes of Engine Malfunction
  Rating of Engine Parts
  Formulating Engine Oils
  Fuel Economy
  Emissions Control
  Extended Service Intervals (Extended Oil Drains)
  Formulations

Chapter 6 — Emissions in an Internal Combustion Engine
Exhaust Emissions of Concern
  Unburned Hydrocarbons (HC)
  Carbon Monoxide (CO)
  Nitrogen Oxides (NOx)
  Ground Level Ozone
  Sulfur Dioxide
  Aldehydes
  Particulate Matter (PM)
  Odor
General Engine Performance Considerations
Emissions Standards
  U. S. Emissions Standards
  Emissions Standards — European Union
Gasoline Engine Emissions Control
  Gasoline Properties Versus Emissions
  Formulated Gasoline
  Reformulated Gasolines (RFGs)
  Effect of Engine Design and Operating Variables On Emissions
Diesel Engine Emissions Control
  Diesel Combustion
  Diesel Fuel Properties
  PuriNOx™ Technology
  Diesel Engine Design and Operating Variables
  Emissions Control Via After-Treatment
  Emissions Control Via Engine Design Changes
Fuel Additives
  Deposit Formation
  Deposit Control Additives/Cleanliness Agents
  Fluidizers
  Anti-Icing Agents
  Octane Improvers
  Lubricity Agents
  Cetane Improvers (Diesel Ignition Improvers)
  Combustion Modifiers/Smoke Suppressants
  Low-Temperature Operability Additives
  Flow Improvers/Wax Modifiers
  Foam Inhibitors
  Corrosion Inhibitors
  Demulsifiers
  Biocides
Antistatic Agents
Drag Reducers
Dyes and Markers
Oxidation Inhibitors/Stabilizers
Metal Deactivators

Chapter 7 — Hydraulic and Transmission Fluids
Hydraulic Fluids
- Tractor Hydraulic Fluids
- Industrial Hydraulic Fluids
- Types of Hydraulic Fluids
- Formulating a Hydraulic Fluid
- Condition-Monitoring Of Hydraulic Fluids
Transmission Fluids
- Automatic Transmission Fluids
- Power Transmission Fluids
- Transmission Fluid Composition and Testing
- Continuously Variable Transmissions (CVTS)
- Lubricants for The Continuously Variable Transmissions (CVTS)
- Formulation Examples
- Miscellaneous Hydraulic Fluids

Chapter 8 — Gear Lubricants
Gear Types
Gear Metallurgy
Types of Gear Damage
- Effect of Design and Operation-Related Factors
- Effect of Lubrication-Related Factors
Gear Oil Formulation
- Base Fluids
- Additives
Lubricant Selection
Gear Lubricant Tests
- Physical Tests
- Analytical Tests
- Performance Tests
Formulation Examples

Chapter 9 — Miscellaneous Industrial Lubricants
Types of Industrial Oils
- Turbine Lubricants
- Performance Specifications
- Desirable Turbine Oil Properties
- Turbine Oil Formulation
- Compressor and Refrigeration Oils
- Miscellaneous Industrial Applications
- Potential Industrial Uses of Synthetic Fluids
- Examples of Industrial Fluids Formulations

Chapter 10 — Lubricating Greases
Lubricating Grease Versus Liquid Lubricant
History of Lubricating Grease Development
Lubricating Grease Classification
Lubricating Grease Market
Grease Composition
- Soap-Thickened Lubricating Greases
- Non-Soap Greases
Grease Chemistry
- Base Fluids
- Additives
Grease Manufacture
- Batch Production
- Continuous Production
- Finishing
- Incorporation of Additives
Desirable Grease Properties
  Consistency
  Consistency Stability
  Penetration
  Rheological Properties
  Lubricating Grease Structure
  Flow Properties
  Thermal Stability (Heat Resistance)
  Storage Stability
  Oxidation Stability
  Sensitivity to Water
  Corrosion Protection
  Load Carrying Tests

Grease Classifications
Characteristics of Modern Greases
Inter-Grease Compatibility
Applications Involving Lubricating Greases
  Grease Selection
  Bearing Lubrication
  Gear Lubrication
  Automotive Aftermarket
  Primary Metals — Steel Mills
  Food Processing
  Textiles

Grease Storage
Handling and Disposal of Used/Waste Greases
Environmentally Compatible Greases
Grease Testing Requirements
  Flow Properties
  Heat Resistance
  Oxidation Stability
  Extreme Pressure and Wear
  Corrosion
  Seal Compatibility
  Stability
  Water Tolerance Tests
  Bench Performance Tests
  Grease Compatibility
  NLGI Certification Mark
  Grease Analysis

Specialty Greases
  Synthetic Lubricating Greases and Their Coding
  Multiple Use Greases
  Multi-Purpose Grease
  Track Roller Lubricants
  Mineral Oils Mixed With Solids
  Heavy Asphaltic-Type Oils Blended With Lighter Oils
  Extreme-Pressure Greases
  Roll Neck Greases
Application and Industry Trends

Chapter 11 — Metalworking And Machining Fluids
Lubrication
Viscosity
Metalworking Fluid Classification
  Classification Based on Base Fluid
  Classification Based on End-Use

Fluid Composition
  Base Fluid
  Additives
Metalworking Fluid Formulations and Testing
Chapter 12 — Lubricant Testing
Introduction of a New Additive or a Product
  The Approval Process
  Physical and Analytical Tests
  Mechanical or Tribological Tests
  In-Service Lubricant Analysis
  Full Scale Testing
  Performance Requirements of Finished Lubricants
  Elements of a Quality Test

Chapter 13 — Lubricants and The Environment
Lubricant Deterioration in Service
Used Oil — Environmental Considerations
Lubricant Conservation
Used Oil Recycling
Oil Re-Conditioning
Lubricants and The Environment
  Environmental Compatibility
  Need For Standardized Testing
  Biodegradability
  Toxicity
Environmentally Acceptable Lubricants
Disposal Issues

Appendix
Terms Related To Lubricants, Lubrication, and Tribology
Table A.1: European Lubricants Coding - Iso 6743
Table A.2: Viscosity Conversion Table — CST Versus SSU
Table A.3: Si Base Units
Table A.4: Examples of Si Derived Units
Table A.5: Si Derived Units with Special Names And Symbols
Table A.7: Si Prefixes
Table A.8: Non-Si Units Accepted For Use with the Si Units
Table A.9: Commonly Used Metric System Units and Symbols
Table A.10: The Most Commonly Used Metric Prefixes
Table A.11: Unit Conversion Factors

References

Subject Index