MODERN STONE CLADDING

Design and Installation of Exterior Dimension Stone Systems

MICHAEL D. LEWIS, AIA

ASTM Manual Series: MNL 21
ASTM Publication Code Number (PCN) 28-021095-10

ASTM 1916 Race Street
Philadelphia, PA 19103-1187
CONTENTS

ABSTRACT ix

FOREWORD xi

1 INTRODUCTION TO MODERN STONE CLADDING:
Approaching Design with Rational Principles 1

The Professional’s Design Responsibility
The Development Of Cladding Fundamentals
 Boundary Conditions for Stone Cladding
 Legitimate Testing in Comparison to Existing Skins
 Organization of the Evaluation Process
 Engineering Decisions That Derive Designs
 Partnering Makes This Approach Successful
How Future Architecture Benefits from Modern Stone Cladding

2 PRECEDENTS TO MODERN STONE CLADDING:
How Stone Became Thin on Building Skins 7

Stone’s Tradition As Shelter
The Ascent of the Bearing Wall
Wall Metamorphosis Caused by the Iron Skeleton
Slender Iron Members Replace Massive Masonry Piers
The Masonry Curtainwall Is Born from Fire
Commercial Momentum Outpaces Masonry’s Conventional Limits
Consequences Learned from Freeing the Façade from the Frame
Architectural Fashion Exploits a Skin Separate from Skeleton
Reluctant Rejection of Traditional Style
Unexpected Problems with Early “Thin” Walls
Engineering Analysis Evolves with Construction Ingenuity
Adapting Stone to Fit into Metal Curtainwalls
Modernized Dimension Stone Manufacturing
Stone’s Potential in the Future’s Architecture
3 THE FUTURE OF STONE CLADDING:
 Toward Load-And-Resistance Factor Design for Exterior Stone Cladding 23

4 DETERMINING RESPONSIBLE DESIGN VALUES:
 Formulating Load-And-Resistance Factor Design for Exterior Stone Cladding 27
 Failure Means Fracture
 Risks Compared with Their Consequences
 Reliability with Changing Variables
 Load Derivation and Design Applications
 Consolidated Uncertainties in Current Stone Engineering
 Segregated Uncertainties in a Limit-State Approach
 Factors for Loads and Resistances

5 GUIDE SPECIFICATION FOR STONE CLADDING SYSTEMS 39
 Scope and Applicability of This Guide Specification
 Why Thin Stone Requires a Unique Engineering Process
 The Structure of The Engineering Process
 A Stone System's Boundary Conditions
 The Engineering Sequence
 A Case Study That Applies the Sequence
 The Approach Related to Existing Practices
 Standards for Depicting and Specifying Stonework
 Standards for Presenting Stonework in Contract Documents
 Limits and Dependencies on Interfacing Work
 The Special Abilities of a Qualified Stone Cladding Designer
 Materials Used to Construct Interfacing Systems in Exterior Walls
 Metal Integrity and Compatibility
 Joint Filler Function and Capability
 How to Keep Exterior Joints Weathertight
 Stone Panel Movement Freedom
 The Environmental and Structural-Proof Function Of The Joint
 Isolation of Components That Occupy the Joint
 Static Effects That Influence Joint Sizing
 Dynamic Effects That Influence Joint Sizing
 Effects That Change Horizontal Joint Widths
 Effects That Change Vertical Joint Widths
 Testing Used to Design Stone and Its Anchors
 Factors That Influence Stone and Anchorage Performance
 An Approach to Objectively Evaluate These Influences
 Standard Methods from The American Society for Testing and Materials
 Geological Mineral Compositions of Stones
 Properties That Affect Natural Stone Structural Performance
 Tests Sequenced to Quantify Stone-Clad Wall System Characteristics
Test Value Interpretation
Tests Designed to Evaluate Anchorages
Tests Designed to Prove the Capacity of an Assembly

Anchorage Device Mechanics
The Function of the Stone Anchor
Proper Design and Installation Philosophy
Correct Anchorage Device Configuration
Handling Stone During Installation
Basic Anchor Device Types
Proper Application and Optimization of Kerfs
Proper Application and Optimization of Dowels

Case Study Testing Applied to the Design Process
ASTM Standard Tests for Material Unit Strengths
Theoretical Panel Test by Finite-Element Structural Analysis
Actual Panel Test for Preliminary Load Capacity
Anchor Capacity and Effective Engagement Length Test
Complete Assembly Full-Panel Chamber Test

BIBLIOGRAPHY 135

INDEX 137