Search ASTM
C14 GLASS AND GLASS PRODUCTS C21 CERAMIC WHITEWARES AND RELATED PRODUCTS D01 PAINT AND RELATED COATINGS, MATERIALS, AND APPLICATIONS D06 D09 ELECTRICAL AND ELECTRONIC INSULATING MATERIALS D10 PACKAGING D11 RUBBER D12 SOAPS AND OTHER DETERGENTS D13 TEXTILES D14 ADHESIVES D15 ENGINE COOLANTS AND RELATED FLUIDS D20 PLASTICS D21 POLISHES D31 LEATHER E12 COLOR AND APPEARANCE E18 SENSORY EVALUATION E20 TEMPERATURE MEASUREMENT E35 PESTICIDES, ANTIMICROBIALS, AND ALTERNATIVE CONTROL AGENTS E41 LABORATORY APPARATUS E53 ASSET MANAGEMENT E57 3D IMAGING SYSTEMS F02 FLEXIBLE BARRIER PACKAGING F05 BUSINESS IMAGING PRODUCTS F06 RESILIENT FLOOR COVERINGS F08 SPORTS EQUIPMENT, PLAYING SURFACES, AND FACILITIES F09 TIRES F10 LIVESTOCK, MEAT, AND POULTRY EVALUATION SYSTEMS F11 VACUUM CLEANERS F13 PEDESTRIAN/WALKWAY SAFETY AND FOOTWEAR F14 FENCES F15 CONSUMER PRODUCTS F16 FASTENERS F24 AMUSEMENT RIDES AND DEVICES F26 FOOD SERVICE EQUIPMENT F27 SNOW SKIING F37 LIGHT SPORT AIRCRAFT F43 LANGUAGE SERVICES AND PRODUCTS F44 GENERAL AVIATION AIRCRAFT A01 STEEL, STAINLESS STEEL AND RELATED ALLOYS A04 IRON CASTINGS A05 METALLIC-COATED IRON AND STEEL PRODUCTS A06 MAGNETIC PROPERTIES B01 ELECTRICAL CONDUCTORS B02 NONFERROUS METALS AND ALLOYS B05 COPPER AND COPPER ALLOYS B07 LIGHT METALS AND ALLOYS B08 METALLIC AND INORGANIC COATINGS B09 METAL POWDERS AND METAL POWDER PRODUCTS B10 REACTIVE AND REFRACTORY METALS AND ALLOYS C03 CHEMICAL-RESISTANT NONMETALLIC MATERIALS C08 REFRACTORIES C28 ADVANCED CERAMICS D01 PAINT AND RELATED COATINGS, MATERIALS, AND APPLICATIONS D20 PLASTICS D30 COMPOSITE MATERIALS E01 ANALYTICAL CHEMISTRY FOR METALS, ORES, AND RELATED MATERIALS E04 METALLOGRAPHY E07 NONDESTRUCTIVE TESTING E08 FATIGUE AND FRACTURE E12 COLOR AND APPEARANCE E13 MOLECULAR SPECTROSCOPY AND SEPARATION SCIENCE E28 MECHANICAL TESTING E29 PARTICLE AND SPRAY CHARACTERIZATION E37 THERMAL MEASUREMENTS E42 SURFACE ANALYSIS F01 ELECTRONICS F34 ROLLING ELEMENT BEARINGS F40 DECLARABLE SUBSTANCES IN MATERIALS F42 ADDITIVE MANUFACTURING TECHNOLOGIES G01 CORROSION OF METALS G03 WEATHERING AND DURABILITY D08 ROOFING AND WATERPROOFING D18 SOIL AND ROCK D19 WATER D20 PLASTICS D22 AIR QUALITY D34 WASTE MANAGEMENT D35 GEOSYNTHETICS E06 PERFORMANCE OF BUILDINGS E44 SOLAR, GEOTHERMAL AND OTHER ALTERNATIVE ENERGY SOURCES E47 E48 BIOENERGY AND INDUSTRIAL CHEMICALS FROM BIOMASS E50 ENVIRONMENTAL ASSESSMENT, RISK MANAGEMENT AND CORRECTIVE ACTION E60 SUSTAINABILITY F20 HAZARDOUS SUBSTANCES AND OIL SPILL RESPONSE F40 DECLARABLE SUBSTANCES IN MATERIALS G02 WEAR AND EROSION E11 QUALITY AND STATISTICS E36 ACCREDITATION & CERTIFICATION E43 SI PRACTICE E55 MANUFACTURE OF PHARMACEUTICAL PRODUCTS E56 NANOTECHNOLOGY F42 ADDITIVE MANUFACTURING TECHNOLOGIES
Bookmark and Share

Features

Features

Rare Earth Materials

ASTM F40 Subcommittee Addresses Standards for Critical Compounds

Rare earth alloys and compounds — lanthanides, scandium and yttrium — make many of today’s product innovations possible, and a recently formed ASTM F40 subcommittee will develop standards for rare earth materials as a vital component in product development and sustainable resource procurement.

As technological innovation continues to move forward at breakneck speed, many consumers might be surprised to learn what’s behind some of the products they’ve come to rely on every day. Few things have had as significant an impact on modern technology as rare earth materials. These advanced elements, sometimes referred to as rare earth metals, drive the miniaturization of popular computer and electronic devices such as the iPod and power hybrid cars such as the Toyota Prius, among other uses.

As rare earth materials play an increasingly critical role in global industries, a new ASTM International subcommittee is ready to address major challenges across the life cycle of these vital resources. ASTM Subcommittee F40.04 on Rare Earth Materials, part of ASTM International Committee F40 on Declarable Substances in Materials, is pursuing a standards development agenda aimed at supporting efficient and safe production, utilization and recycling of rare earths.

Little Known Elements with a Powerful Punch

Rare earth materials are alloys and compounds that comprise one or more of a set of 17 chemical elements, including the 15 lanthanides, plus scandium and yttrium. These materials support the manufacturing of innovative products such as smartphones, flat screen televisions, night-vision goggles and rechargeable batteries. Rare earths help make these and many other technologies smaller, lighter and more affordable.

Ever wonder why those tiny headphones you use to listen to your favorite music produce such great sound? The key is rare earths and their ability to pack a lot of power into a smaller space. Any product that incorporates a small electric motor, like a set of headphones, often relies on magnets to operate. Before the use of rare earths, producing a strong magnetic field required big magnets, leading to the manufacture of heavy, clunky technology. Today, rare earth materials like neodymium enable the manufacture of magnets that are much smaller, yet significantly stronger, than their predecessors.

Stimulating the Worldwide Supply Chain

Unlike their name, rare earths are actually relatively abundant in the earth’s crust, even more abundant than many precious minerals. But with their close similarity in terms of chemical properties, rare earths are not typically found in concentrated forms and are difficult to separate. As a result, their mining and extraction are often costly and labor intensive.

The challenges associated with rare earth procurement come at a time when the need for these materials is rapidly escalating. To help generate the new product portfolios that will ensure their ongoing competitiveness, global companies are looking for greater access to rare earth materials to stockpile their internal supplies. This increased demand has converged with supply bottlenecks, resulting in a looming shortage of these resources throughout the worldwide high-tech, energy and automotive sectors. According to the U.S. Environmental Protection Agency, global demand for rare earths could exceed 200,000 tons (180 Gg) by 2014, which would eclipse current production by more than 75,000 tons (83 Gg) per year.1

To better ensure that rare earths are more readily available for industry use, public and private sector stakeholders are focusing on ways to diversify supplies. In recent years, China has been providing more than 90 percent of rare earth elements worldwide. To stock the supply chain, stakeholders point to large untapped deposits of rare earths in other parts of Asia, Australia, Russia, South Africa, the United States and other areas. To successfully tap into these reserves, however, requires strategies that will support economically favorable and environmentally friendly mining activities.

Equally important to enhancing supply in the years ahead are 1) the adoption of more efficient manufacturing techniques that will contribute to the use of fewer materials in production processes; and 2) standards facilitating increased recycling so that used rare earths can be reclaimed from spent consumer and industrial products.

F40.04: Filling the Void for Rare Earth Standards

As the issues and challenges surrounding rare earth materials continue to evolve, ASTM International Subcommittee F40.04 will fulfill a critical need for the global marketplace: developing first-time standards that drive the safe production and utilization of rare earths and provide methods for increasing material recycling and reuse.

Taco van der Maten, product manager for X-ray fluorescence at PANalytical in Almelo, the Netherlands, chairman of ASTM Committee F40 and a member of the ASTM International board of directors, says, “To drive growth and ongoing competitiveness across numerous industries, global manufacturers rely on access to the rare earths and other critical materials that are at the heart of product innovation. Through the development of standards that drive the efficient use of available resources and streamline recycling processes, ASTM F40.04 will contribute to a healthier rare earth supply chain and a sustainable, long-term supply of materials.”

F40.04’s standards development activities for rare earths will address a wide range of needs, including chemical and physical identification, characterization and testing; classification and terminology; recycling, reuse and recapture of materials; efficient use of available resources; environmental considerations for selection and use; material selection; alternative material selection and effectiveness testing; labeling and end-of-life considerations; and guides for supply chain management and risk management.

“The pragmatic ASTM process provides the speed and collaboration to enable diverse international stakeholders to swiftly and effectively offer relevant, high quality solutions to the real-time issues confronting the rare earth materials market,” says van der Maten.

Propelling Green Energy Growth

With their unique magnetic, catalytic and luminescent properties, rare earth elements are also at the core of the development of clean energy technologies, including the manufacture of wind turbines and solar panels. Large wind turbine designs are enhanced by the use of rare earth magnets, which support greater output and enable the deployment of gearless generators for better reliability and online performance.

Underscoring the importance of rare earth materials to green energy growth, the U.S. Department of Energy has established the Critical Materials Institute at its Ames Laboratory in Ames, Iowa. The institute will bring together leading researchers from academia, four U.S. Department of Energy national laboratories and the private sector to find ways to help avoid a rare earth supply shortage.

The DOE’s “2011 Critical Materials Strategy Summary” report notes that supply challenges for five rare earth metals (dysprosium, terbium, europium, neodymium and yttrium) may affect clean energy technology deployment in the coming years.2 CMI will spearhead a coordinated effort designed to eliminate materials criticality as an impediment to the commercialization of clean energy technologies, and it will address challenges across the entire life cycle of these materials. This ranges from enabling new sources; improving the economics of existing sources; accelerating material development and deployment; more efficient use in manufacturing, recycling and reuse; and developing strategies to assess and address the life cycles of new materials.

Alex King, D.Phil., director of the Critical Materials Institute, says, “As we pursue our mandate to eliminate barriers to the advancement of clean energy, standards that improve efficiency in the use of rare earth materials and make it easier for recycling will be an important strategy in helping fulfill our mission. We look forward to consulting with the technical experts at ASTM International and working cooperatively to achieve our common goals.”

Brighter Future for the Lighting Industry

Another sector with a major stake in the future developments of rare earth materials is the lighting industry. Rare earths such as lanthanum, cerium, terbium, yttrium and europium comprise 85 percent of the phosphors used for the creation of white light in fluorescent lamps. In addition, as the industry looks to make the transition from traditional light sources to energy-efficient solid-state LED (light emitting diode) technologies, rare earths will support the development of LED products that deliver lower energy consumption, longer life, improved robustness, smaller size and greater reliability.

Robert Horner, director of public policy for the Illuminating Engineering Society of North America, New York, N.Y., says, “As the lighting industry continues to address the critically important supply issues surrounding rare earth materials, we believe that ASTM International’s standards development efforts will help to bring further order. There is a strong need throughout the marketplace for standards that address rare earth processing, as well as recycling efforts. The technical experts at IES look forward to cooperating with ASTM to fulfill these important goals.”

References

1. U.S. Environmental Protection Agency, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues,” U.S. Environmental Protection Agency, Dec. 2012.

2. U.S. Department of Energy, “2011 Critical Materials Strategy Summary,” Dec. 2011.

Doug Clauson is a freelance writer based in Wynnewood, Pa.

ASTM Subcommittee F40.04 on Rare Earth Materials at a Glance

  • Subcommittee Scope: ASTM Subcommittee F40.04 will focus on the promotion of knowledge, stimulation of research and implementation of technology through the development of standards for rare earth materials.
  • ASTM International Contact: Alyson Fick (phone: 610-832-9710).
  • Next Meeting: As part of the F40 meetings to be held Nov. 13-14 during the ASTM Committee Week in Jacksonville, Fla.

This article appears in the issue of Standardization News.